These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 26081421)

  • 41. A strategy to increase the efficiency of the dye-sensitized TiO2 solar cells operated by photoexcitation of dye-to-TiO2 charge-transfer bands.
    Tae EL; Lee SH; Lee JK; Yoo SS; Kang EJ; Yoon KB
    J Phys Chem B; 2005 Dec; 109(47):22513-22. PubMed ID: 16853932
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Effect of the Scattering Layer in Dye-Sensitized Solar Cells Employing a Cobalt-Based Aqueous Gel Electrolyte.
    Xiang W; Chen D; Caruso RA; Cheng YB; Bach U; Spiccia L
    ChemSusChem; 2015 Nov; 8(21):3704-11. PubMed ID: 26391901
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A "click-chemistry" approach for the synthesis of porphyrin dyads as sensitizers for dye-sensitized solar cells.
    Nikolaou V; Angaridis PA; Charalambidis G; Sharma GD; Coutsolelos AG
    Dalton Trans; 2015 Jan; 44(4):1734-47. PubMed ID: 25465056
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Novel quinoxaline-based organic sensitizers for dye-sensitized solar cells.
    Chang DW; Lee HJ; Kim JH; Park SY; Park SM; Dai L; Baek JB
    Org Lett; 2011 Aug; 13(15):3880-3. PubMed ID: 21702514
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Polyoxometalate-anatase TiO2 composites are introduced into the photoanode of dye-sensitized solar cells to retard the recombination and increase the electron lifetime.
    Wang SM; Liu L; Chen WL; Wang EB; Su ZM
    Dalton Trans; 2013 Feb; 42(8):2691-5. PubMed ID: 23314419
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Three dimensional indium-tin-oxide nanorod array for charge collection in dye-sensitized solar cells.
    Lee B; Guo P; Li SQ; Buchholz DB; Chang RP
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17713-22. PubMed ID: 25147966
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dye-sensitized nickel(II)oxide photocathodes for tandem solar cell applications.
    Nattestad A; Ferguson M; Kerr R; Cheng YB; Bach U
    Nanotechnology; 2008 Jul; 19(29):295304. PubMed ID: 21730603
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nitrogen-doped carbon nanotube-based bilayer thin film as transparent counter electrode for dye-sensitized solar cells (DSSCs).
    Tantang H; Kyaw AK; Zhao Y; Chan-Park MB; Tok AI; Hu Z; Li LJ; Sun XW; Zhang Q
    Chem Asian J; 2012 Mar; 7(3):541-5. PubMed ID: 22241687
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells.
    Bi D; Boschloo G; Schwarzmüller S; Yang L; Johansson EM; Hagfeldt A
    Nanoscale; 2013 Dec; 5(23):11686-91. PubMed ID: 24100947
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Densely aligned rutile TiO2 nanorod arrays with high surface area for efficient dye-sensitized solar cells.
    Lv M; Zheng D; Ye M; Sun L; Xiao J; Guo W; Lin C
    Nanoscale; 2012 Sep; 4(19):5872-9. PubMed ID: 22899164
    [TBL] [Abstract][Full Text] [Related]  

  • 51. TiO2 nanotubes infiltrated with nanoparticles for dye sensitized solar cells.
    Pan X; Chen C; Zhu K; Fan Z
    Nanotechnology; 2011 Jun; 22(23):235402. PubMed ID: 21474874
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dye-controlled interfacial electron transfer for high-current indium tin oxide photocathodes.
    Huang Z; He M; Yu M; Click K; Beauchamp D; Wu Y
    Angew Chem Int Ed Engl; 2015 Jun; 54(23):6857-61. PubMed ID: 25907357
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Carbonaceous materials and their advances as a counter electrode in dye-sensitized solar cells: challenges and prospects.
    Kouhnavard M; Ludin NA; Ghaffari BV; Sopian K; Ikeda S
    ChemSusChem; 2015 May; 8(9):1510-33. PubMed ID: 25925421
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dye-sensitized solar cell counter electrodes based on carbon nanotubes.
    Hwang S; Batmunkh M; Nine MJ; Chung H; Jeong H
    Chemphyschem; 2015 Jan; 16(1):53-65. PubMed ID: 25367083
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dye-sensitized solar cells based on hydroquinone/benzoquinone as bio-inspired redox couple with different counter electrodes.
    Cheng M; Yang X; Chen C; Zhao J; Zhang F; Sun L
    Phys Chem Chem Phys; 2013 Sep; 15(36):15146-52. PubMed ID: 23925069
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Unoccupied states in Cu and Zn octaethyl-porphyrin and phthalocyanine.
    Cook PL; Yang W; Liu X; García-Lastra JM; Rubio A; Himpsel FJ
    J Chem Phys; 2011 May; 134(20):204707. PubMed ID: 21639467
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Carbon Nanotubes for Dye-Sensitized Solar Cells.
    Batmunkh M; Biggs MJ; Shapter JG
    Small; 2015 Jul; 11(25):2963-89. PubMed ID: 25864907
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Polyethylenimine-assisted growth of high-aspect-ratio nitrogen-doped ZnO (NZO) nanorod arrays and their effect on performance of dye-sensitized solar cells.
    Mahmood K; Swain BS; Han GS; Kim BJ; Jung HS
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10028-43. PubMed ID: 24940708
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Triphenylamine-Based Conjugated Polymer with Donor-π-Acceptor Architecture as Organic Sensitizer for Dye-Sensitized Solar Cells.
    Zhang W; Fang Z; Su M; Saeys M; Liu B
    Macromol Rapid Commun; 2009 Sep; 30(18):1533-7. PubMed ID: 21638416
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A facile method to prepare SnO2 nanotubes for use in efficient SnO2-TiO2 core-shell dye-sensitized solar cells.
    Gao C; Li X; Lu B; Chen L; Wang Y; Teng F; Wang J; Zhang Z; Pan X; Xie E
    Nanoscale; 2012 Jun; 4(11):3475-81. PubMed ID: 22572999
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.