BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 26081732)

  • 21. Potential of Phragmites australis for the removal of veterinary pharmaceuticals from aquatic media.
    Carvalho PN; Basto MC; Almeida CM
    Bioresour Technol; 2012 Jul; 116():497-501. PubMed ID: 22522014
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interactions between salt marsh plants and Cu nanoparticles - Effects on metal uptake and phytoremediation processes.
    Andreotti F; Mucha AP; Caetano C; Rodrigues P; Rocha Gomes C; Almeida CM
    Ecotoxicol Environ Saf; 2015 Oct; 120():303-9. PubMed ID: 26094036
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Contribution of Spartina maritima to the reduction of eutrophication in estuarine systems.
    Sousa AI; Lillebø AI; Caçador I; Pardal MA
    Environ Pollut; 2008 Dec; 156(3):628-35. PubMed ID: 18684544
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of Phragmites australis in mediating inland salt marsh migration in a Mid-Atlantic estuary.
    Smith JA
    PLoS One; 2013; 8(5):e65091. PubMed ID: 23705031
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sublethal effects of the antibiotic tylosin on estuarine benthic microalgal communities.
    Pinckney JL; Hagenbuch IM; Long RA; Lovell CR
    Mar Pollut Bull; 2013 Mar; 68(1-2):8-12. PubMed ID: 23398744
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bromine enrichment in marsh sediments as a marker of environmental changes driven by Grand Solar Minima and anthropogenic activity (Caminha, NW of Portugal).
    Moreno J; Fatela F; Leorri E; Araújo MF; Moreno F; De la Rosa J; Freitas MC; Valente T; Corbett DR
    Sci Total Environ; 2015 Feb; 506-507():554-66. PubMed ID: 25433387
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Copper phytoremediation by a salt marsh plant (Phragmites australis) enhanced by autochthonous bioaugmentation.
    Oliveira T; Mucha AP; Reis I; Rodrigues P; Gomes CR; Almeida CM
    Mar Pollut Bull; 2014 Nov; 88(1-2):231-8. PubMed ID: 25240741
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of monospecific banks of salt marsh vegetation on sediment bacterial communities.
    Oliveira V; Santos AL; Coelho F; Gomes NC; Silva H; Almeida A; Cunha A
    Microb Ecol; 2010 Jul; 60(1):167-79. PubMed ID: 20495797
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of redox oscillations on the phosphogypsum waste in an estuarine salt-marsh system.
    Papaslioti EM; Pérez-López R; Parviainen A; Phan VTH; Marchesi C; Fernandez-Martinez A; Garrido CJ; Nieto JM; Charlet L
    Chemosphere; 2020 Mar; 242():125174. PubMed ID: 31675582
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tidally driven N, P, Fe and Mn exchanges in salt marsh sediments of Tagus estuary (SW Europe).
    Caetano M; Bernárdez P; Santos-Echeandia J; Prego R; Vale C
    Environ Monit Assess; 2012 Nov; 184(11):6541-52. PubMed ID: 22086267
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Density-dependent role of an invasive marsh grass, Phragmites australis, on ecosystem service provision.
    Theuerkauf SJ; Puckett BJ; Theuerkauf KW; Theuerkauf EJ; Eggleston DB
    PLoS One; 2017; 12(2):e0173007. PubMed ID: 28235024
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mercury uptake and allocation in Juncus maritimus: implications for phytoremediation and restoration of a mercury contaminated salt marsh.
    Figueira E; Freitas R; Pereira E; Duarte A
    J Environ Monit; 2012 Aug; 14(8):2181-8. PubMed ID: 22739436
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The influence of Spartina maritima on carbon retention capacity in salt marshes from warm-temperate estuaries.
    Sousa AI; Lillebø AI; Pardal MA; Caçador I
    Mar Pollut Bull; 2010; 61(4-6):215-23. PubMed ID: 20304438
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Numerical analysis of inter-specific relationships in the estuary salt marsh plant community of southern Chongming Dongtan, Shanghai.].
    Ding WH; Li XZ; Jiang JY; Huang X; Zhang YQ; Zhang Q; Zhou YX
    Ying Yong Sheng Tai Xue Bao; 2016 May; 27(5):1417-1426. PubMed ID: 29732802
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Patterns of Distribution and Environmental Correlates of Macroalgal Assemblages and Sediment Chlorophyll A in Oregon Tidal Wetlands.
    Janousek CN; Folger CL
    J Phycol; 2012 Dec; 48(6):1448-57. PubMed ID: 27009995
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microbial abundance and community in subsurface flow constructed wetland microcosms: role of plant presence.
    Wang Q; Xie H; Ngo HH; Guo W; Zhang J; Liu C; Liang S; Hu Z; Yang Z; Zhao C
    Environ Sci Pollut Res Int; 2016 Mar; 23(5):4036-45. PubMed ID: 25772872
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The prevalence of antibiotic-resistant bacteria (ARB) in waters of the Lower Ballona Creek Watershed, Los Angeles County, California.
    Kawecki S; Kuleck G; Dorsey JH; Leary C; Lum M
    Environ Monit Assess; 2017 Jun; 189(6):261. PubMed ID: 28488226
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Is the cutting of oil contaminated marshes an efficient clean-up technique in a subtropical estuary?
    Wolinski AL; Lana PC; Sandrini-Neto L
    Mar Pollut Bull; 2011 Jun; 62(6):1227-32. PubMed ID: 21507433
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nitrate removal from eutrophic wetlands polluted by metal-mine wastes: effects of liming and plant growth.
    González-Alcaraz MN; Conesa HM; Álvarez-Rogel J
    J Environ Manage; 2013 Oct; 128():964-72. PubMed ID: 23892281
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Salt marsh sediment bacteria: their distribution and response to external nutrient inputs.
    Bowen JL; Crump BC; Deegan LA; Hobbie JE
    ISME J; 2009 Aug; 3(8):924-34. PubMed ID: 19421233
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.