BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 26081739)

  • 1. Relationship between organic micropollutants and hydro-sedimentary processes at a karst spring in south-west Germany.
    Schiperski F; Zirlewagen J; Hillebrand O; Nödler K; Licha T; Scheytt T
    Sci Total Environ; 2015 Nov; 532():360-7. PubMed ID: 26081739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating the dynamics of two herbicides at a karst spring in Germany: Consequences for sustainable raw water management.
    Hillebrand O; Nödler K; Geyer T; Licha T
    Sci Total Environ; 2014 Jun; 482-483():193-200. PubMed ID: 24646672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of two artificial sweeteners, cyclamate and acesulfame, to identify and quantify wastewater contributions in a karst spring.
    Zirlewagen J; Licha T; Schiperski F; Nödler K; Scheytt T
    Sci Total Environ; 2016 Mar; 547():356-365. PubMed ID: 26795541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multitracer experiment to evaluate the attenuation of selected organic micropollutants in a karst aquifer.
    Hillebrand O; Nödler K; Sauter M; Licha T
    Sci Total Environ; 2015 Feb; 506-507():338-43. PubMed ID: 25460968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Occurrence and dynamics of micropollutants in a karst aquifer.
    Morasch B
    Environ Pollut; 2013 Feb; 173():133-7. PubMed ID: 23202643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Caffeine as an indicator for the quantification of untreated wastewater in karst systems.
    Hillebrand O; Nödler K; Licha T; Sauter M; Geyer T
    Water Res; 2012 Feb; 46(2):395-402. PubMed ID: 22104295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 20 years of long-term atrazine monitoring in a shallow aquifer in western Germany.
    Vonberg D; Vanderborght J; Cremer N; Pütz T; Herbst M; Vereecken H
    Water Res; 2014 Mar; 50():294-306. PubMed ID: 24188580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time karst groundwater monitoring and bacterial analysis as early warning strategies for drinking water supply contamination.
    Fernández-Ortega J; Barberá JA; Andreo B
    Sci Total Environ; 2024 Feb; 912():169539. PubMed ID: 38141988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracing water perturbation using NO
    Lorette G; Peyraube N; Lastennet R; Denis A; Sabidussi J; Fournier M; Viennet D; Gonand J; Villanueva JD
    Sci Total Environ; 2020 Jul; 725():138512. PubMed ID: 32302853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing pharmaceutical, personal care product, and hormone contamination in a karst aquifer of southwestern Illinois, USA, using water quality and stream flow parameters.
    Dodgen LK; Kelly WR; Panno SV; Taylor SJ; Armstrong DL; Wiles KN; Zhang Y; Zheng W
    Sci Total Environ; 2017 Feb; 578():281-289. PubMed ID: 27836351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anthropogenic contaminants as tracers in an urbanizing karst aquifer.
    Mahler B; Massei N
    J Contam Hydrol; 2007 Apr; 91(1-2):81-106. PubMed ID: 17161500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterisation of dissolved organic matter in karst spring waters using intrinsic fluorescence: relationship with infiltration processes.
    Mudarra M; Andreo B; Baker A
    Sci Total Environ; 2011 Aug; 409(18):3448-62. PubMed ID: 21680013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discriminating between point and non-point sources of atrazine contamination of a sandy aquifer.
    Leterme B; Vanclooster M; Rounsevell MD; Bogaert P
    Sci Total Environ; 2006 Jun; 362(1-3):124-42. PubMed ID: 16055171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Particle transport in a karst aquifer: natural and artificial tracer experiments with bacteria, bacteriophages and microspheres.
    Auckenthaler A; Raso G; Huggenberger P
    Water Sci Technol; 2002; 46(3):131-8. PubMed ID: 12227598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport of road salt contamination in karst aquifers and soils over multiple timescales.
    Robinson HK; Hasenmueller EA
    Sci Total Environ; 2017 Dec; 603-604():94-108. PubMed ID: 28623795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using stormwater hysteresis to characterize karst spring discharge.
    Toran L; Reisch CE
    Ground Water; 2013; 51(4):575-87. PubMed ID: 22974348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the attenuation potential of a karst aquifer by an artificial dualtracer experiment with caffeine.
    Hillebrand O; Nödler K; Licha T; Sauter M; Geyer T
    Water Res; 2012 Oct; 46(16):5381-8. PubMed ID: 22877878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atrazine Transport through a Soil-Epikarst System.
    Lerch RN; Groves CG; Polk JS; Miller BV; Shelley J
    J Environ Qual; 2018 Sep; 47(5):1205-1213. PubMed ID: 30272783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Occurrence and transport of pharmaceuticals in a karst groundwater system affected by domestic wastewater treatment plants.
    Einsiedl F; Radke M; Maloszewski P
    J Contam Hydrol; 2010 Sep; 117(1-4):26-36. PubMed ID: 20621388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence-based multi-parameter approach to characterize dynamics of organic carbon, faecal bacteria and particles at alpine karst springs.
    Frank S; Goeppert N; Goldscheider N
    Sci Total Environ; 2018 Feb; 615():1446-1459. PubMed ID: 28935241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.