BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 26081755)

  • 1. Whole-genome cartography of p53 response elements ranked on transactivation potential.
    Tebaldi T; Zaccara S; Alessandrini F; Bisio A; Ciribilli Y; Inga A
    BMC Genomics; 2015 Jun; 16(1):464. PubMed ID: 26081755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions of chromatin context, binding site sequence content, and sequence evolution in stress-induced p53 occupancy and transactivation.
    Su D; Wang X; Campbell MR; Song L; Safi A; Crawford GE; Bell DA
    PLoS Genet; 2015 Jan; 11(1):e1004885. PubMed ID: 25569532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functionally distinct polymorphic sequences in the human genome that are targets for p53 transactivation.
    Tomso DJ; Inga A; Menendez D; Pittman GS; Campbell MR; Storici F; Bell DA; Resnick MA
    Proc Natl Acad Sci U S A; 2005 May; 102(18):6431-6. PubMed ID: 15843459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional evolution of the p53 regulatory network through its target response elements.
    Jegga AG; Inga A; Menendez D; Aronow BJ; Resnick MA
    Proc Natl Acad Sci U S A; 2008 Jan; 105(3):944-9. PubMed ID: 18187580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noncanonical DNA motifs as transactivation targets by wild type and mutant p53.
    Jordan JJ; Menendez D; Inga A; Noureddine M; Bell DA; Resnick MA
    PLoS Genet; 2008 Jun; 4(6):e1000104. PubMed ID: 18714371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell context dependent p53 genome-wide binding patterns and enrichment at repeats.
    Botcheva K; McCorkle SR
    PLoS One; 2014; 9(11):e113492. PubMed ID: 25415302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potentiating the p53 network.
    Menendez D; Inga A; Resnick MA
    Discov Med; 2010 Jul; 10(50):94-100. PubMed ID: 20670604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. p53FamTaG: a database resource of human p53, p63 and p73 direct target genes combining in silico prediction and microarray data.
    Sbisà E; Catalano D; Grillo G; Licciulli F; Turi A; Liuni S; Pesole G; De Grassi A; Caratozzolo MF; D'Erchia AM; Navarro B; Tullo A; Saccone C; Gisel A
    BMC Bioinformatics; 2007 Mar; 8 Suppl 1(Suppl 1):S20. PubMed ID: 17430565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential transactivation by the p53 transcription factor is highly dependent on p53 level and promoter target sequence.
    Inga A; Storici F; Darden TA; Resnick MA
    Mol Cell Biol; 2002 Dec; 22(24):8612-25. PubMed ID: 12446780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of new p53 target microRNAs by bioinformatics and functional analysis.
    Bisio A; De Sanctis V; Del Vescovo V; Denti MA; Jegga AG; Inga A; Ciribilli Y
    BMC Cancer; 2013 Nov; 13():552. PubMed ID: 24256616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diverse stresses dramatically alter genome-wide p53 binding and transactivation landscape in human cancer cells.
    Menendez D; Nguyen TA; Freudenberg JM; Mathew VJ; Anderson CW; Jothi R; Resnick MA
    Nucleic Acids Res; 2013 Aug; 41(15):7286-301. PubMed ID: 23775793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microarray and ChIP-seq data analysis revealed changes in p53-mediated transcriptional regulation in Nutlin-3-treated U2OS cells.
    Zhao S; Niu F; Xu CY; Ye L; Bi GB; Chen L; Gong P; Tian G; Nie TH
    Mol Med Rep; 2015 Sep; 12(3):4284-4290. PubMed ID: 26080812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hidden Markov model for analyzing ChIP-chip experiments on genome tiling arrays and its application to p53 binding sequences.
    Li W; Meyer CA; Liu XS
    Bioinformatics; 2005 Jun; 21 Suppl 1():i274-82. PubMed ID: 15961467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The coordinated p53 and estrogen receptor cis-regulation at an FLT1 promoter SNP is specific to genotoxic stress and estrogenic compound.
    Ciribilli Y; Andreotti V; Menendez D; Langen JS; Schoenfelder G; Resnick MA; Inga A
    PLoS One; 2010 Apr; 5(4):e10236. PubMed ID: 20422012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ChromaSig: a probabilistic approach to finding common chromatin signatures in the human genome.
    Hon G; Ren B; Wang W
    PLoS Comput Biol; 2008 Oct; 4(10):e1000201. PubMed ID: 18927605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TP53 engagement with the genome occurs in distinct local chromatin environments via pioneer factor activity.
    Sammons MA; Zhu J; Drake AM; Berger SL
    Genome Res; 2015 Feb; 25(2):179-88. PubMed ID: 25391375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into p53 transcriptional function via genome-wide chromatin occupancy and gene expression analysis.
    Nikulenkov F; Spinnler C; Li H; Tonelli C; Shi Y; Turunen M; Kivioja T; Ignatiev I; Kel A; Taipale J; Selivanova G
    Cell Death Differ; 2012 Dec; 19(12):1992-2002. PubMed ID: 22790872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of p53-target genes in Danio rerio.
    Mandriani B; Castellana S; Rinaldi C; Manzoni M; Venuto S; Rodriguez-Aznar E; Galceran J; Nieto MA; Borsani G; Monti E; Mazza T; Merla G; Micale L
    Sci Rep; 2016 Sep; 6():32474. PubMed ID: 27581768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Divergent evolution of human p53 binding sites: cell cycle versus apoptosis.
    Horvath MM; Wang X; Resnick MA; Bell DA
    PLoS Genet; 2007 Jul; 3(7):e127. PubMed ID: 17677004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping the p53 transcriptome universe using p53 natural polymorphs.
    Wang B; Niu D; Lam TH; Xiao Z; Ren EC
    Cell Death Differ; 2014 Apr; 21(4):521-32. PubMed ID: 24076587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.