These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
408 related articles for article (PubMed ID: 26081779)
1. Characterization of potassium hydroxide (KOH) modified hydrochars from different feedstocks for enhanced removal of heavy metals from water. Sun K; Tang J; Gong Y; Zhang H Environ Sci Pollut Res Int; 2015 Nov; 22(21):16640-51. PubMed ID: 26081779 [TBL] [Abstract][Full Text] [Related]
2. Removal of divalent heavy metals (Cd, Cu, Pb, and Zn) and arsenic(III) from aqueous solutions using scoria: kinetics and equilibria of sorption. Kwon JS; Yun ST; Lee JH; Kim SO; Jo HY J Hazard Mater; 2010 Feb; 174(1-3):307-13. PubMed ID: 19828237 [TBL] [Abstract][Full Text] [Related]
3. Potassium permanganate modification of hydrochar enhances sorption of Pb(II), Cu(II), and Cd(II). Zhang Y; Wan Y; Zheng Y; Yang Y; Huang J; Chen H; Quan G; Gao B Bioresour Technol; 2023 Oct; 386():129482. PubMed ID: 37451511 [TBL] [Abstract][Full Text] [Related]
4. Kinetics of cadmium, chromium, and lead sorption onto chemically modified sugarcane bagasse and wheat straw. Mahmood-ul-Hassan M; Suthar V; Rafique E; Ahmad R; Yasin M Environ Monit Assess; 2015 Jul; 187(7):470. PubMed ID: 26116198 [TBL] [Abstract][Full Text] [Related]
5. Development of a new adsorbent from pumpkin husk by KOH-modification to remove copper ions. Çelekli A; Bozkuş B; Bozkurt H Environ Sci Pollut Res Int; 2019 Apr; 26(12):11514-11523. PubMed ID: 29423689 [TBL] [Abstract][Full Text] [Related]
6. 2-line ferrihydrite: synthesis, characterization and its adsorption behaviour for removal of Pb(II), Cd(II), Cu(II) and Zn(II) from aqueous solutions. Rout K; Mohapatra M; Anand S Dalton Trans; 2012 Mar; 41(11):3302-12. PubMed ID: 22286102 [TBL] [Abstract][Full Text] [Related]
7. Microwave assisted hydrothermal preparation of rice straw hydrochars for adsorption of organics and heavy metals. Li Y; Tsend N; Li T; Liu H; Yang R; Gai X; Wang H; Shan S Bioresour Technol; 2019 Feb; 273():136-143. PubMed ID: 30423497 [TBL] [Abstract][Full Text] [Related]
8. [Biosorption of Cd(II), Cu(II), Pb(II) and Zn(II) in aqueous solutions by fruiting bodies of macrofungi (Auricularia polytricha and Tremella fuciformis)]. Mo Y; Pan R; Huang HW; Cao LX; Zhang RD Huan Jing Ke Xue; 2010 Jul; 31(7):1566-74. PubMed ID: 20825027 [TBL] [Abstract][Full Text] [Related]
9. Heavy metals binding properties of esterified lemon. Arslanoglu H; Altundogan HS; Tumen F J Hazard Mater; 2009 May; 164(2-3):1406-13. PubMed ID: 18980807 [TBL] [Abstract][Full Text] [Related]
10. Fast microwave-assisted preparation of a low-cost and recyclable carboxyl modified lignocellulose-biomass jute fiber for enhanced heavy metal removal from water. Du Z; Zheng T; Wang P; Hao L; Wang Y Bioresour Technol; 2016 Feb; 201():41-9. PubMed ID: 26630582 [TBL] [Abstract][Full Text] [Related]
11. Anaerobic fermentation treatment improved Cd Fu H; Wang B; Li D; Xue L; Hua Y; Feng Y; Xie H Chemosphere; 2021 Jan; 263():127981. PubMed ID: 32822946 [TBL] [Abstract][Full Text] [Related]
12. Application of mucilage from Dicerocaryum eriocarpum plant as biosorption medium in the removal of selected heavy metal ions. Jones BO; John OO; Luke C; Ochieng A; Bassey BJ J Environ Manage; 2016 Jul; 177():365-72. PubMed ID: 27150318 [TBL] [Abstract][Full Text] [Related]
13. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions. Ijagbemi CO; Baek MH; Kim DS J Hazard Mater; 2009 Jul; 166(1):538-46. PubMed ID: 19131158 [TBL] [Abstract][Full Text] [Related]
14. Mechanisms for the removal of Cd(II) and Cu(II) from aqueous solution and mine water by biochars derived from agricultural wastes. Bandara T; Xu J; Potter ID; Franks A; Chathurika JBAJ; Tang C Chemosphere; 2020 Sep; 254():126745. PubMed ID: 32315813 [TBL] [Abstract][Full Text] [Related]
15. Mercerized mesoporous date pit activated carbon-A novel adsorbent to sequester potentially toxic divalent heavy metals from water. Aldawsari A; Khan MA; Hameed BH; Alqadami AA; Siddiqui MR; Alothman ZA; Ahmed AYBH PLoS One; 2017; 12(9):e0184493. PubMed ID: 28910368 [TBL] [Abstract][Full Text] [Related]
16. Heavy metals removal from aqueous solutions and wastewaters by using various byproducts. Shaheen SM; Eissa FI; Ghanem KM; Gamal El-Din HM; Al Anany FS J Environ Manage; 2013 Oct; 128():514-21. PubMed ID: 23831673 [TBL] [Abstract][Full Text] [Related]
17. Characterization of ultraviolet-modified biochar from different feedstocks for enhanced removal of hexavalent chromium from water. Peng Z; Liu X; Chen H; Liu Q; Tang J Water Sci Technol; 2019 May; 79(9):1705-1716. PubMed ID: 31241476 [TBL] [Abstract][Full Text] [Related]
18. Hydrochar as a bio-based adsorbent for heavy metals removal: A review of production processes, adsorption mechanisms, kinetic models, regeneration and reusability. Khanzada AK; Al-Hazmi HE; Kurniawan TA; Majtacz J; Piechota G; Kumar G; Ezzati P; Saeb MR; Rabiee N; Karimi-Maleh H; Lima EC; Mąkinia J Sci Total Environ; 2024 Oct; 945():173972. PubMed ID: 38897477 [TBL] [Abstract][Full Text] [Related]
19. Removal of cadmium(II) from aqueous solution by corn stalk graft copolymers. Zheng L; Dang Z; Zhu C; Yi X; Zhang H; Liu C Bioresour Technol; 2010 Aug; 101(15):5820-6. PubMed ID: 20335027 [TBL] [Abstract][Full Text] [Related]
20. Characterization of potassium hydroxide modified anthracite particles and enhanced removal of 17α-ethinylestradiol and bisphenol A. He J; Zhou Q; Guo J; Fang F Environ Sci Pollut Res Int; 2018 Aug; 25(22):22224-22235. PubMed ID: 29804254 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]