These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

500 related articles for article (PubMed ID: 26082190)

  • 1. Quantum-trajectory Monte Carlo method for study of electron-crystal interaction in STEM.
    Ruan Z; Zeng RG; Ming Y; Zhang M; Da B; Mao SF; Ding ZJ
    Phys Chem Chem Phys; 2015 Jul; 17(27):17628-37. PubMed ID: 26082190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculation of Bohmian quantum trajectories for STEM.
    Zhang M; Ming Y; Zeng RG; Ding ZJ
    J Microsc; 2015 Nov; 260(2):200-7. PubMed ID: 26396064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SU-E-T-489: Quantum versus Classical Trajectory Monte Carlo Simulations of Low Energy Electron Transport.
    Thomson R; Kawrakow I
    Med Phys; 2012 Jun; 39(6Part17):3817-3818. PubMed ID: 28517446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron beam broadening in electron-transparent samples at low electron energies.
    Hugenschmidt M; Müller E; Gerthsen D
    J Microsc; 2019 Jun; 274(3):150-157. PubMed ID: 31001840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An inelastic multislice simulation method incorporating plasmon energy losses.
    Mendis BG
    Ultramicroscopy; 2019 Nov; 206():112816. PubMed ID: 31377522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-energy cross-section calculations of single molecules by electron impact: a classical Monte Carlo transport approach with quantum mechanical description.
    Madsen JR; Akabani G
    Phys Med Biol; 2014 May; 59(9):2285-305. PubMed ID: 24731979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model calculation of coherence effects in the elastic backscattering of very low energy electrons (1-20 eV) from amorphous ice.
    Liljequist D
    Int J Radiat Biol; 2012 Jan; 88(1-2):50-3. PubMed ID: 21615241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Image simulation for atomic resolution secondary electron image.
    Wu L; Egerton RF; Zhu Y
    Ultramicroscopy; 2012 Dec; 123():66-73. PubMed ID: 22940532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calculation of the surface excitation parameter for Si and Ge from measured electron backscattered spectra by means of a Monte-Carlo simulation.
    Orosz GT; Sulyok A; Gergely G; Gurbán S; Menyhard M
    Microsc Microanal; 2003 Aug; 9(4):343-8. PubMed ID: 12901769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum versus classical Monte Carlo simulation of low-energy electron transport in condensed amorphous media.
    Thomson RM; Kawrakow I
    Phys Med; 2018 Oct; 54():179-188. PubMed ID: 30007841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of sample thickness and in-concentration of InGaAs quantum wells by transmission measurements in a scanning electron microscope.
    Volkenandt T; Müller E; Hu DZ; Schaadt DM; Gerthsen D
    Microsc Microanal; 2010 Oct; 16(5):604-13. PubMed ID: 20633317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EPOTRAN: a full-differential Monte Carlo code for electron and positron transport in liquid and gaseous water.
    Champion C; Le Loirec C; Stosic B
    Int J Radiat Biol; 2012 Jan; 88(1-2):54-61. PubMed ID: 22098415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel quantum dynamical approach in electron microscopy combining wave-packet propagation with Bohmian trajectories.
    Rudinsky S; Sanz AS; Gauvin R
    J Chem Phys; 2017 Mar; 146(10):104702. PubMed ID: 28298114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo simulation of secondary electron and backscattered electron images in scanning electron microscopy for specimen with complex geometric structure.
    Li HM; Ding ZJ
    Scanning; 2005; 27(5):254-67. PubMed ID: 16268178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detailed Monte Carlo Simulation of electron transport and electron energy loss spectra.
    Attarian Shandiz M; Salvat F; Gauvin R
    Scanning; 2016 Nov; 38(6):475-491. PubMed ID: 26512795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical and experimental study of nanopore drilling by a focused electron beam in transmission electron microscopy.
    Kim HM; Lee MH; Kim KB
    Nanotechnology; 2011 Jul; 22(27):275303. PubMed ID: 21597159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neutron stimulated emission computed tomography: a Monte Carlo simulation approach.
    Sharma AC; Harrawood BP; Bender JE; Tourassi GD; Kapadia AJ
    Phys Med Biol; 2007 Oct; 52(20):6117-31. PubMed ID: 17921575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radial secondary electron dose profiles and biological effects in light-ion beams based on analytical and Monte Carlo calculations using distorted wave cross sections.
    Wiklund K; Olivera GH; Brahme A; Lind BK
    Radiat Res; 2008 Jul; 170(1):83-92. PubMed ID: 18582149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sample thickness determination by scanning transmission electron microscopy at low electron energies.
    Volkenandt T; Müller E; Gerthsen D
    Microsc Microanal; 2014 Feb; 20(1):111-23. PubMed ID: 24331292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo simulation of electron backscattering from compounds with low mean atomic number.
    Howell PG; Boyde A
    Scanning; 1998 Jan; 20(1):45-9. PubMed ID: 9493414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.