These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 26082232)
1. Production of Highly Sialylated Recombinant Glycoproteins Using Ricinus communis Agglutinin-I-Resistant CHO Glycosylation Mutants. Goh JS; Chan KF; Song Z Methods Mol Biol; 2015; 1321():323-33. PubMed ID: 26082232 [TBL] [Abstract][Full Text] [Related]
2. Highly sialylated recombinant human erythropoietin production in large-scale perfusion bioreactor utilizing CHO-gmt4 (JW152) with restored GnT I function. Goh JS; Liu Y; Liu H; Chan KF; Wan C; Teo G; Zhou X; Xie F; Zhang P; Zhang Y; Song Z Biotechnol J; 2014 Jan; 9(1):100-9. PubMed ID: 24166780 [TBL] [Abstract][Full Text] [Related]
3. Producing recombinant therapeutic glycoproteins with enhanced sialylation using CHO-gmt4 glycosylation mutant cells. Goh JS; Liu Y; Chan KF; Wan C; Teo G; Zhang P; Zhang Y; Song Z Bioengineered; 2014; 5(4):269–73. PubMed ID: 24911584 [TBL] [Abstract][Full Text] [Related]
4. RCA-I-resistant CHO mutant cells have dysfunctional GnT I and expression of normal GnT I in these mutants enhances sialylation of recombinant erythropoietin. Goh JS; Zhang P; Chan KF; Lee MM; Lim SF; Song Z Metab Eng; 2010 Jul; 12(4):360-8. PubMed ID: 20346410 [TBL] [Abstract][Full Text] [Related]
5. Enhancement of recombinant human EPO production and sialylation in chinese hamster ovary cells through Bombyx mori 30Kc19 gene expression. Wang Z; Park JH; Park HH; Tan W; Park TH Biotechnol Bioeng; 2011 Jul; 108(7):1634-42. PubMed ID: 21337325 [TBL] [Abstract][Full Text] [Related]
6. CHO glycosylation mutants as potential host cells to produce therapeutic proteins with enhanced efficacy. Zhang P; Chan KF; Haryadi R; Bardor M; Song Z Adv Biochem Eng Biotechnol; 2013; 131():63-87. PubMed ID: 23142953 [TBL] [Abstract][Full Text] [Related]
7. Enhancement of recombinant human EPO production and glycosylation in serum-free suspension culture of CHO cells through expression and supplementation of 30Kc19. Park JH; Wang Z; Jeong HJ; Park HH; Kim BG; Tan WS; Choi SS; Park TH Appl Microbiol Biotechnol; 2012 Nov; 96(3):671-83. PubMed ID: 22714097 [TBL] [Abstract][Full Text] [Related]
8. Rapid amplification system for recombinant protein production in Chinese Hamster Ovary (CHO) Cells. Metta MK; Kunaparaju RK; Tantravahi S Cell Mol Biol (Noisy-le-grand); 2016 Feb; 62(2):101-6. PubMed ID: 26950459 [TBL] [Abstract][Full Text] [Related]
9. Enhancing recombinant glycoprotein sialylation through CMP-sialic acid transporter over expression in Chinese hamster ovary cells. Wong NS; Yap MG; Wang DI Biotechnol Bioeng; 2006 Apr; 93(5):1005-16. PubMed ID: 16432895 [TBL] [Abstract][Full Text] [Related]
10. Enhanced sialylation of recombinant human erythropoietin in Chinese hamster ovary cells by combinatorial engineering of selected genes. Son YD; Jeong YT; Park SY; Kim JH Glycobiology; 2011 Aug; 21(8):1019-28. PubMed ID: 21436238 [TBL] [Abstract][Full Text] [Related]
11. A single-plasmid vector for transgene amplification using short hairpin RNA targeting the 3'-UTR of amplifiable dhfr. Kang SY; Kim YG; Lee HW; Lee EG Appl Microbiol Biotechnol; 2015 Dec; 99(23):10117-26. PubMed ID: 26245680 [TBL] [Abstract][Full Text] [Related]
12. Array-based analysis of secreted glycoproteins for rapid selection of a single cell producing a glycoprotein with desired glycosylation. Park S; Kim W; Kim Y; Son YD; Lee SC; Kim E; Kim SH; Kim JH; Kim HS Anal Chem; 2010 Jul; 82(13):5830-7. PubMed ID: 20550136 [TBL] [Abstract][Full Text] [Related]
13. Enhancing the sialylation of recombinant EPO produced in CHO cells via the inhibition of glycosphingolipid biosynthesis. Kwak CY; Park SY; Lee CG; Okino N; Ito M; Kim JH Sci Rep; 2017 Oct; 7(1):13059. PubMed ID: 29026192 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of poly-LacNAc biosynthesis with release of CMP-Neu5Ac feedback inhibition increases the sialylation of recombinant EPO produced in CHO cells. Lee CG; Oh MJ; Park SY; An HJ; Kim JH Sci Rep; 2018 May; 8(1):7273. PubMed ID: 29740059 [TBL] [Abstract][Full Text] [Related]
15. A functional analysis of N-glycosylation-related genes on sialylation of recombinant erythropoietin in six commonly used mammalian cell lines. Zhang P; Tan DL; Heng D; Wang T; Mariati ; Yang Y; Song Z Metab Eng; 2010 Nov; 12(6):526-36. PubMed ID: 20826224 [TBL] [Abstract][Full Text] [Related]
16. Co-overexpression of Mgat1 and Mgat4 in CHO cells for production of highly sialylated albumin-erythropoietin. Cha HM; Lim JH; Yeon JH; Hwang JM; Kim DI Enzyme Microb Technol; 2017 Aug; 103():53-58. PubMed ID: 28554385 [TBL] [Abstract][Full Text] [Related]
17. Effect of culture temperature on erythropoietin production and glycosylation in a perfusion culture of recombinant CHO cells. Ahn WS; Jeon JJ; Jeong YR; Lee SJ; Yoon SK Biotechnol Bioeng; 2008 Dec; 101(6):1234-44. PubMed ID: 18980186 [TBL] [Abstract][Full Text] [Related]
18. Glycoengineering of Chinese hamster ovary cells for enhanced erythropoietin N-glycan branching and sialylation. Yin B; Gao Y; Chung CY; Yang S; Blake E; Stuczynski MC; Tang J; Kildegaard HF; Andersen MR; Zhang H; Betenbaugh MJ Biotechnol Bioeng; 2015 Nov; 112(11):2343-51. PubMed ID: 26154505 [TBL] [Abstract][Full Text] [Related]
19. A novel sugar analog enhances sialic acid production and biotherapeutic sialylation in CHO cells. Yin B; Wang Q; Chung CY; Bhattacharya R; Ren X; Tang J; Yarema KJ; Betenbaugh MJ Biotechnol Bioeng; 2017 Aug; 114(8):1899-1902. PubMed ID: 28295160 [TBL] [Abstract][Full Text] [Related]
20. [Extracellular sialidase degrades sialic acid in recombinant human erythropoietin produced by an industrial Chinese hamster ovary cell strain]. Liu Y; Zhou X; Liu H; Song Z; Zhang Y Sheng Wu Gong Cheng Xue Bao; 2012 Dec; 28(12):1492-9. PubMed ID: 23593873 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]