These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 26082232)
21. Identification and analysis of specific chromosomal region adjacent to exogenous Dhfr-amplified region in Chinese hamster ovary cell genome. Park JY; Takagi Y; Yamatani M; Honda K; Asakawa S; Shimizu N; Omasa T; Ohtake H J Biosci Bioeng; 2010 May; 109(5):504-11. PubMed ID: 20347775 [TBL] [Abstract][Full Text] [Related]
22. Glycoengineering of Mammalian Expression Systems on a Cellular Level. Heffner KM; Wang Q; Hizal DB; Can Ö; Betenbaugh MJ Adv Biochem Eng Biotechnol; 2021; 175():37-69. PubMed ID: 29532110 [TBL] [Abstract][Full Text] [Related]
23. Short hairpin RNA targeted to dihydrofolate reductase enhances the immunoglobulin G expression in gene-amplified stable Chinese hamster ovary cells. Wu SC; Hong WW; Liu JH Vaccine; 2008 Sep; 26(38):4969-74. PubMed ID: 18602963 [TBL] [Abstract][Full Text] [Related]
24. Glycoengineering of CHO Cells to Improve Product Quality. Wang Q; Yin B; Chung CY; Betenbaugh MJ Methods Mol Biol; 2017; 1603():25-44. PubMed ID: 28493121 [TBL] [Abstract][Full Text] [Related]
25. A novel RNA silencing vector to improve antigen expression and stability in Chinese hamster ovary cells. Hong WW; Wu SC Vaccine; 2007 May; 25(20):4103-11. PubMed ID: 17428585 [TBL] [Abstract][Full Text] [Related]
26. The GalNAc-type O-Glycoproteome of CHO cells characterized by the SimpleCell strategy. Yang Z; Halim A; Narimatsu Y; Jitendra Joshi H; Steentoft C; Schjoldager KT; Alder Schulz M; Sealover NR; Kayser KJ; Paul Bennett E; Levery SB; Vakhrushev SY; Clausen H Mol Cell Proteomics; 2014 Dec; 13(12):3224-35. PubMed ID: 25092905 [TBL] [Abstract][Full Text] [Related]
27. Effect of mild-thiol reducing agents and alpha2,3-sialyltransferase expression on secretion and sialylation of recombinant EPO in CHO cells. Chang KH; Jeong YT; Kwak CY; Choi O; Kim JH J Microbiol Biotechnol; 2013 May; 23(5):699-706. PubMed ID: 23648861 [TBL] [Abstract][Full Text] [Related]
28. Engineering Chinese hamster ovary (CHO) cells for producing recombinant proteins with simple glycoforms by zinc-finger nuclease (ZFN)-mediated gene knockout of mannosyl (alpha-1,3-)-glycoprotein beta-1,2-N-acetylglucosaminyltransferase (Mgat1). Sealover NR; Davis AM; Brooks JK; George HJ; Kayser KJ; Lin N J Biotechnol; 2013 Aug; 167(1):24-32. PubMed ID: 23777858 [TBL] [Abstract][Full Text] [Related]
29. Engineering selection stringency on expression vector for the production of recombinant human alpha1-antitrypsin using Chinese Hamster ovary cells. Chin CL; Chin HK; Chin CS; Lai ET; Ng SK BMC Biotechnol; 2015 Jun; 15():44. PubMed ID: 26033090 [TBL] [Abstract][Full Text] [Related]
30. Combining Butyrated ManNAc with Glycoengineered CHO Cells Improves EPO Glycan Quality and Production. Wang Q; Chung CY; Yang W; Yang G; Chough S; Chen Y; Yin B; Bhattacharya R; Hu Y; Saeui CT; Yarema KJ; Betenbaugh MJ; Zhang H Biotechnol J; 2019 Apr; 14(4):e1800186. PubMed ID: 30221828 [TBL] [Abstract][Full Text] [Related]
31. Sialyllactose supplementation enhances sialylation of Fc-fusion glycoprotein in recombinant Chinese hamster ovary cell culture. Lee HM; Kim TH; Park JH; Heo NY; Kim HS; Kim DE; Lee MK; Lee GM; You J; Kim YG J Biotechnol; 2024 Sep; 392():180-189. PubMed ID: 39038661 [TBL] [Abstract][Full Text] [Related]
32. The isolation of CHO cells with a site conferring a high and reproducible transgene amplification rate. Cacciatore JJ; Leonard EF; Chasin LA J Biotechnol; 2012 Dec; 164(2):346-53. PubMed ID: 23376841 [TBL] [Abstract][Full Text] [Related]
33. Transcriptome dynamics of transgene amplification in Chinese hamster ovary cells. Vishwanathan N; Le H; Jacob NM; Tsao YS; Ng SW; Loo B; Liu Z; Kantardjieff A; Hu WS Biotechnol Bioeng; 2014 Mar; 111(3):518-28. PubMed ID: 24108600 [TBL] [Abstract][Full Text] [Related]
34. Establishment of DHFR-deficient HEK293 cells for high yield of therapeutic glycoproteins. Mensah EO; Guo XY; Gao XD; Fujita M J Biosci Bioeng; 2019 Oct; 128(4):487-494. PubMed ID: 31031194 [TBL] [Abstract][Full Text] [Related]
35. Generation of recombinant CHO(dhfr-) cell lines by single selection for dhfr+ transformants. Wernicke D; Will H Anal Biochem; 1992 May; 203(1):146-50. PubMed ID: 1524211 [TBL] [Abstract][Full Text] [Related]
36. Improving the recombinant human erythropoietin glycosylation using microsome supplementation in CHO cell-free system. Gurramkonda C; Rao A; Borhani S; Pilli M; Deldari S; Ge X; Pezeshk N; Han TC; Tolosa M; Kostov Y; Tolosa L; Wood DW; Vattem K; Frey DD; Rao G Biotechnol Bioeng; 2018 May; 115(5):1253-1264. PubMed ID: 29384203 [TBL] [Abstract][Full Text] [Related]
37. Evidence for an accessory component that increases the affinity of the erythropoietin receptor. Dong YJ; Goldwasser E Exp Hematol; 1993 Mar; 21(3):483-6. PubMed ID: 8440347 [TBL] [Abstract][Full Text] [Related]
38. Enhanced sialylation of recombinant erythropoietin in genetically engineered Chinese-hamster ovary cells. Jeong YT; Choi O; Son YD; Park SY; Kim JH Biotechnol Appl Biochem; 2009 Apr; 52(Pt 4):283-91. PubMed ID: 18590515 [TBL] [Abstract][Full Text] [Related]
39. Producing Biologics with Defined N-Glycosylation in Plants. Esqueda A; Chen Q Methods Mol Biol; 2023; 2597():235-250. PubMed ID: 36374425 [TBL] [Abstract][Full Text] [Related]