BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 26082498)

  • 1. Cross talk between the response regulators PhoB and TctD allows for the integration of diverse environmental signals in Pseudomonas aeruginosa.
    Bielecki P; Jensen V; Schulze W; Gödeke J; Strehmel J; Eckweiler D; Nicolai T; Bielecka A; Wille T; Gerlach RG; Häussler S
    Nucleic Acids Res; 2015 Jul; 43(13):6413-25. PubMed ID: 26082498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphate limitation induces catalase expression in Sinorhizobium meliloti, Pseudomonas aeruginosa and Agrobacterium tumefaciens.
    Yuan ZC; Zaheer R; Finan TM
    Mol Microbiol; 2005 Nov; 58(3):877-94. PubMed ID: 16238634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loss of the Two-Component System TctD-TctE in
    Taylor PK; Zhang L; Mah TF
    mSphere; 2019 Mar; 4(2):. PubMed ID: 30842268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RhlR expression in Pseudomonas aeruginosa is modulated by the Pseudomonas quinolone signal via PhoB-dependent and -independent pathways.
    Jensen V; Löns D; Zaoui C; Bredenbruch F; Meissner A; Dieterich G; Münch R; Häussler S
    J Bacteriol; 2006 Dec; 188(24):8601-6. PubMed ID: 17028277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel members of the phosphate regulon in Escherichia coli O157:H7 identified using a whole-genome shotgun approach.
    Yoshida Y; Sugiyama S; Oyamada T; Yokoyama K; Makino K
    Gene; 2012 Jul; 502(1):27-35. PubMed ID: 22504029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes.
    Kulasekara HD; Ventre I; Kulasekara BR; Lazdunski A; Filloux A; Lory S
    Mol Microbiol; 2005 Jan; 55(2):368-80. PubMed ID: 15659157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene regulation by phosphate in enteric bacteria.
    Wanner BL
    J Cell Biochem; 1993 Jan; 51(1):47-54. PubMed ID: 8432742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pseudomonas aeruginosa SoxR does not conform to the archetypal paradigm for SoxR-dependent regulation of the bacterial oxidative stress adaptive response.
    Palma M; Zurita J; Ferreras JA; Worgall S; Larone DH; Shi L; Campagne F; Quadri LE
    Infect Immun; 2005 May; 73(5):2958-66. PubMed ID: 15845502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel target genes of PsrA transcriptional regulator of Pseudomonas aeruginosa.
    Kojic M; Jovcic B; Vindigni A; Odreman F; Venturi V
    FEMS Microbiol Lett; 2005 May; 246(2):175-81. PubMed ID: 15899403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An in vivo inducible gene of Pseudomonas aeruginosa encodes an anti-ExsA to suppress the type III secretion system.
    Ha UH; Kim J; Badrane H; Jia J; Baker HV; Wu D; Jin S
    Mol Microbiol; 2004 Oct; 54(2):307-20. PubMed ID: 15469505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphate starvation relayed by PhoB activates the expression of the Pseudomonas aeruginosa σvreI ECF factor and its target genes.
    Faure LM; Llamas MA; Bastiaansen KC; de Bentzmann S; Bigot S
    Microbiology (Reading); 2013 Jul; 159(Pt 7):1315-1327. PubMed ID: 23657684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prokaryotic 2-component systems and the OmpR/PhoB superfamily.
    Nguyen MP; Yoon JM; Cho MH; Lee SW
    Can J Microbiol; 2015 Nov; 61(11):799-810. PubMed ID: 26382712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The AraC-Type Transcriptional Regulator GliR (PA3027) Activates Genes of Glycerolipid Metabolism in
    Kotecka K; Kawalek A; Kobylecki K; Bartosik AA
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34064685
    [No Abstract]   [Full Text] [Related]  

  • 14. The Pseudomonas aeruginosa hemA promoter is regulated by Anr, Dnr, NarL and Integration Host Factor.
    Krieger R; Rompf A; Schobert M; Jahn D
    Mol Genet Genomics; 2002 May; 267(3):409-17. PubMed ID: 12073043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of the multidrug efflux pumps MexCD-OprJ and MexEF-OprN is associated with a reduction of type III secretion in Pseudomonas aeruginosa.
    Linares JF; López JA; Camafeita E; Albar JP; Rojo F; Martínez JL
    J Bacteriol; 2005 Feb; 187(4):1384-91. PubMed ID: 15687203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional activity of Pseudomonas aeruginosa fhp promoter is dependent on two regulators in addition to FhpR.
    Koskenkorva T; Aro-Kärkkäinen N; Bachmann D; Arai H; Frey AD; Kallio PT
    Arch Microbiol; 2008 Apr; 189(4):385-96. PubMed ID: 18043907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional regulation of the flavohemoglobin gene for aerobic nitric oxide detoxification by the second nitric oxide-responsive regulator of Pseudomonas aeruginosa.
    Arai H; Hayashi M; Kuroi A; Ishii M; Igarashi Y
    J Bacteriol; 2005 Jun; 187(12):3960-8. PubMed ID: 15937158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the PvdS-regulated promoter motif in Pseudomonas syringae pv. tomato DC3000 reveals regulon members and insights regarding PvdS function in other pseudomonads.
    Swingle B; Thete D; Moll M; Myers CR; Schneider DJ; Cartinhour S
    Mol Microbiol; 2008 May; 68(4):871-89. PubMed ID: 18363796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental regulation of Pseudomonas aeruginosa PAO1 Las and Rhl quorum-sensing systems.
    Duan K; Surette MG
    J Bacteriol; 2007 Jul; 189(13):4827-36. PubMed ID: 17449617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional Characterization of TetR-like Transcriptional Regulator PA3973 from
    Kotecka K; Kawalek A; Modrzejewska-Balcerek M; Gawor J; Zuchniewicz K; Gromadka R; Bartosik AA
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36498910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.