These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 26082567)

  • 1. Sn-Ag-Cu nanosolders: Melting behavior and phase diagram prediction in the Sn-rich corner of the ternary system.
    Roshanghias A; Vrestal J; Yakymovych A; Richter KW; Ipser H
    CALPHAD; 2015 Jun; 49():101-109. PubMed ID: 26082567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel lead-free Sn-Cu-xBi nanosolders by chemical reduction method.
    Huang PC; Duh JG
    J Nanosci Nanotechnol; 2009 Feb; 9(2):764-8. PubMed ID: 19441388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and thermal behavior of tin-based alloy (Sn-Ag-Cu) nanoparticles.
    Roshanghias A; Yakymovych A; Bernardi J; Ipser H
    Nanoscale; 2015 Mar; 7(13):5843-51. PubMed ID: 25757694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase diagram and structural evolution of tin/indium (Sn/In) nanosolder particles: from a non-equilibrium state to an equilibrium state.
    Shu Y; Ando T; Yin Q; Zhou G; Gu Z
    Nanoscale; 2017 Aug; 9(34):12398-12408. PubMed ID: 28808709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale characterization of 1D Sn-3.5Ag nanosolders and their application into nanowelding at the nanoscale.
    Zhang H; Zhang J; Lan Q; Ma H; Qu K; Inkson BJ; Mellors NJ; Xue D; Peng Y
    Nanotechnology; 2014 Oct; 25(42):425301. PubMed ID: 25265097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Computational Thermodynamics-Assisted Development of Sn-Bi-In-Ga Quaternary Alloys as Low-Temperature Pb-Free Solders.
    Yang CH; Zhou S; Lin SK; Nishikawa H
    Materials (Basel); 2019 Feb; 12(4):. PubMed ID: 30791585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New synthesis approach for low temperature bimetallic nanoparticles: size and composition controlled Sn-Cu nanoparticles.
    Jo YH; Park JC; Bang JU; Song H; Lee HM
    J Nanosci Nanotechnol; 2011 Feb; 11(2):1037-41. PubMed ID: 21456135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multitechnique characterization of conventional and experimental Ag-based brazing alloys for orthodontic applications.
    Ntasi A; Al Jabbari YS; Silikas N; Eliades T; Zinelis S
    Dent Mater; 2018 Mar; 34(3):e25-e35. PubMed ID: 29395471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat-induced spinodal decomposition of Ag-Cu nanoparticles.
    Sopoušek J; Zobač O; Buršík J; Roupcová P; Vykoukal V; Brož P; Pinkas J; Vřešt'ál J
    Phys Chem Chem Phys; 2015 Nov; 17(42):28277-85. PubMed ID: 25929324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nano-crystal melting calculation for Al, Cu and Ag considering macro-crystal surface melting.
    Jin B; Liu S; Du Y; Kaptay G; Fu T
    Phys Chem Chem Phys; 2022 Sep; 24(36):22278-22288. PubMed ID: 36098238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size- and shape-dependent phase diagram of In-Sb nano-alloys.
    Ghasemi M; Zanolli Z; Stankovski M; Johansson J
    Nanoscale; 2015 Nov; 7(41):17387-96. PubMed ID: 26440811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of Ternary Liquidus Temperatures by Statistical Modeling of Binary and Ternary Ag-Al-Sn-Zn Systems.
    Miura A; Hokimoto T; Nagao M; Yanase T; Shimada T; Tadanaga K
    ACS Omega; 2017 Aug; 2(8):5271-5282. PubMed ID: 31457798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microstructures and Properties of Sn2.5Ag0.7Cu0.1RE Composite Solders Reinforced with Cu-Coated Graphene Nanosheets Synthesized by Pyrolysis.
    Zhang M; Zhang KK; Huo FP; Wang HG; Wang Y
    Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30658465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoscale Visualization of Phase Transition in Melting of Sn-Bi Particles by
    Ishiguro N; Higashino T; Hirose M; Takahashi Y
    Microsc Microanal; 2020 Oct; 26(5):878-885. PubMed ID: 32854802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase Equilibria of the In-Pd-Sn System at 500 °C and 800 °C: Experimental Study and CALPHAD Modeling.
    Pavlenko AS; Kabanova EG; Kareva MA; Ptashkina EA; Kustov AL; Zhmurko GP; Kuznetsov VN
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Cu-Li-Sn Phase Diagram: Isopleths, Liquidus Projection and Reaction Scheme.
    Fürtauer S; Flandorfer H
    PLoS One; 2016; 11(10):e0165058. PubMed ID: 27788175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and properties of Sn-Cu lead-free solders in electronics packaging.
    Zhao M; Zhang L; Liu ZQ; Xiong MY; Sun L
    Sci Technol Adv Mater; 2019; 20(1):421-444. PubMed ID: 31489052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of CuZnAl Particles on Properties and Microstructure of Sn-58Bi Solder.
    Yang F; Zhang L; Liu ZQ; Zhong SJ; Ma J; Bao L
    Materials (Basel); 2017 May; 10(5):. PubMed ID: 28772917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-Scale Sonochemical Synthesis of Bi-Sn Eutectic Alloy Nanoparticles.
    Kang YK; Kim J; Darko K; Park SK; Kim MG
    J Nanosci Nanotechnol; 2020 May; 20(5):3201-3205. PubMed ID: 31635665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size effect model on kinetics of interfacial reaction between Sn-xAg-yCu solders and Cu substrate.
    Huang ML; Yang F
    Sci Rep; 2014 Nov; 4():7117. PubMed ID: 25408359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.