BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 26082760)

  • 1. Corrigendum: Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: a meta-analysis.
    Ungerfeld EM
    Front Microbiol; 2015; 6():538. PubMed ID: 26082760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: a meta-analysis.
    Ungerfeld EM
    Front Microbiol; 2015; 6():37. PubMed ID: 25699029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic Hydrogen Flows in Rumen Fermentation: Principles and Possibilities of Interventions.
    Ungerfeld EM
    Front Microbiol; 2020; 11():589. PubMed ID: 32351469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular hydrogen generated by elemental magnesium supplementation alters rumen fermentation and microbiota in goats.
    Wang M; Wang R; Zhang X; Ungerfeld EM; Long D; Mao H; Jiao J; Beauchemin KA; Tan Z
    Br J Nutr; 2017 Sep; 118(6):401-410. PubMed ID: 28927478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coleus amboinicus (Lour.) leaves as a modulator of ruminal methanogenesis and biohydrogenation in vitro.
    Yanza YR; Szumacher-Strabel M; Bryszak M; Gao M; Kolodziejski P; Stochmal A; Slusarczyk S; Patra AK; Cieslak A
    J Anim Sci; 2018 Nov; 96(11):4868-4881. PubMed ID: 30085144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bayesian mechanistic modeling of thermodynamically controlled volatile fatty acid, hydrogen and methane production in the bovine rumen.
    van Lingen HJ; Fadel JG; Moraes LE; Bannink A; Dijkstra J
    J Theor Biol; 2019 Nov; 480():150-165. PubMed ID: 31401059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of coconut and fish oils on ruminal methanogenesis, fermentation, and abundance and diversity of microbial populations in vitro.
    Patra AK; Yu Z
    J Dairy Sci; 2013 Mar; 96(3):1782-92. PubMed ID: 23332846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limits to Dihydrogen Incorporation into Electron Sinks Alternative to Methanogenesis in Ruminal Fermentation.
    Ungerfeld EM
    Front Microbiol; 2015; 6():1272. PubMed ID: 26635743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of some novel alternative electron sinks to inhibit ruminal methanogenesis.
    Ungerfeld EM; Rust SR; Burnett R
    Reprod Nutr Dev; 2003; 43(2):189-202. PubMed ID: 12956318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular hydrogen produced by elemental magnesium inhibits rumen fermentation and enhances methanogenesis in dairy cows.
    Ma ZY; Zhang XM; Wang M; Wang R; Jiang ZY; Tan ZL; Gao FX; Muhammed A
    J Dairy Sci; 2019 Jun; 102(6):5566-5576. PubMed ID: 30981486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corn silage in dairy cow diets to reduce ruminal methanogenesis: effects on the rumen metabolically active microbial communities.
    Lettat A; Hassanat F; Benchaar C
    J Dairy Sci; 2013 Aug; 96(8):5237-48. PubMed ID: 23769352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of garlic oil, nitrate, saponin and their combinations supplemented to different substrates on in vitro fermentation, ruminal methanogenesis, and abundance and diversity of microbial populations.
    Patra AK; Yu Z
    J Appl Microbiol; 2015 Jul; 119(1):127-38. PubMed ID: 25846054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of monensin withdrawal on rumen fermentation, methanogenesis and microbial populations in cattle.
    Abrar A; Tsukahara T; Kondo M; Ban-Tokuda T; Chao W; Matsui H
    Anim Sci J; 2015 Sep; 86(9):849-54. PubMed ID: 25782058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibiting Methanogenesis Stimulated de novo Synthesis of Microbial Amino Acids in Mixed Rumen Batch Cultures Growing on Starch but Not on Cellulose.
    Ungerfeld EM; Aedo MF; Muñoz C; Urrutia NL; Martínez ED; Saldivia M
    Microorganisms; 2020 May; 8(6):. PubMed ID: 32466548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of protozoa on methane production in rumen and hindgut of calves around time of weaning.
    Schönhusen U; Zitnan R; Kuhla S; Jentsch W; Derno M; Voigt J
    Arch Tierernahr; 2003 Aug; 57(4):279-95. PubMed ID: 14533867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Coconut Materials on In vitro Ruminal Methanogenesis and Fermentation Characteristics.
    Kim ET; Park CG; Lim DH; Kwon EG; Ki KS; Kim SB; Moon YH; Shin NH; Lee SS
    Asian-Australas J Anim Sci; 2014 Dec; 27(12):1721-5. PubMed ID: 25358365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation.
    Lan W; Yang C
    Sci Total Environ; 2019 Mar; 654():1270-1283. PubMed ID: 30841400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between thiamine and subacute ruminal acidosis induced by a high-grain diet in dairy cows.
    Pan XH; Yang L; Xue FG; Xin HR; Jiang LS; Xiong BH; Beckers Y
    J Dairy Sci; 2016 Nov; 99(11):8790-8801. PubMed ID: 27568043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of berry seed residues on ruminal fermentation, methane concentration, milk production, and fatty acid proportions in the rumen and milk of dairy cows.
    Bryszak M; Szumacher-Strabel M; El-Sherbiny M; Stochmal A; Oleszek W; Roj E; Patra AK; Cieslak A
    J Dairy Sci; 2019 Feb; 102(2):1257-1273. PubMed ID: 30580953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dietary starch and rhubarb supplement increase ruminal dissolved hydrogen without altering rumen fermentation and methane emissions in goats.
    Wang M; Wang R; Liu M; Beauchemin KA; Sun XZ; Tang SX; Jiao JZ; Tan ZL; He ZX
    Animal; 2019 May; 13(5):975-982. PubMed ID: 30293542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.