These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 26083057)
21. Hybrid bio-photo-electro-chemical cells for solar water splitting. Pinhassi RI; Kallmann D; Saper G; Dotan H; Linkov A; Kay A; Liveanu V; Schuster G; Adir N; Rothschild A Nat Commun; 2016 Aug; 7():12552. PubMed ID: 27550091 [TBL] [Abstract][Full Text] [Related]
22. Prospects for conversion of solar energy into chemical fuels: the concept of a solar fuels industry. Harriman A Philos Trans A Math Phys Eng Sci; 2013 Aug; 371(1996):20110415. PubMed ID: 23816906 [TBL] [Abstract][Full Text] [Related]
23. Perovskite-Solar-Cell-Powered Integrated Fuel Conversion and Energy-Storage Devices. Yang G; Yang W; Gu H; Fu Y; Wang B; Cai H; Xia J; Zhang N; Liang C; Xing G; Yang S; Chen Y; Huang W Adv Mater; 2023 Nov; 35(44):e2300383. PubMed ID: 36906920 [TBL] [Abstract][Full Text] [Related]
24. Recent advances in visible-light-responsive photocatalysts for hydrogen production and solar energy conversion--from semiconducting TiO2 to MOF/PCP photocatalysts. Horiuchi Y; Toyao T; Takeuchi M; Matsuoka M; Anpo M Phys Chem Chem Phys; 2013 Aug; 15(32):13243-53. PubMed ID: 23760469 [TBL] [Abstract][Full Text] [Related]
25. Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system. Torella JP; Gagliardi CJ; Chen JS; Bediako DK; Colón B; Way JC; Silver PA; Nocera DG Proc Natl Acad Sci U S A; 2015 Feb; 112(8):2337-42. PubMed ID: 25675518 [TBL] [Abstract][Full Text] [Related]
26. Decoupling Hydrogen and Oxygen Production in Acidic Water Electrolysis Using a Polytriphenylamine-Based Battery Electrode. Ma Y; Dong X; Wang Y; Xia Y Angew Chem Int Ed Engl; 2018 Mar; 57(11):2904-2908. PubMed ID: 29384260 [TBL] [Abstract][Full Text] [Related]
27. Efficient water-splitting device based on a bismuth vanadate photoanode and thin-film silicon solar cells. Han L; Abdi FF; van de Krol R; Liu R; Huang Z; Lewerenz HJ; Dam B; Zeman M; Smets AH ChemSusChem; 2014 Oct; 7(10):2832-8. PubMed ID: 25138735 [TBL] [Abstract][Full Text] [Related]
28. Proposed photosynthesis method for producing hydrogen from dissociated water molecules using incident near-infrared light. Li X; Li Z; Yang J Phys Rev Lett; 2014 Jan; 112(1):018301. PubMed ID: 24483934 [TBL] [Abstract][Full Text] [Related]
29. Towards artificial leaves for solar hydrogen and fuels from carbon dioxide. Bensaid S; Centi G; Garrone E; Perathoner S; Saracco G ChemSusChem; 2012 Mar; 5(3):500-21. PubMed ID: 22431486 [TBL] [Abstract][Full Text] [Related]
30. Achieving solar overall water splitting with hybrid photosystems of photosystem II and artificial photocatalysts. Wang W; Chen J; Li C; Tian W Nat Commun; 2014 Aug; 5():4647. PubMed ID: 25115942 [TBL] [Abstract][Full Text] [Related]
31. Nanocatalysts for Solar Water Splitting and a Perspective on Hydrogen Economy. Grewe T; Meggouh M; Tüysüz H Chem Asian J; 2016 Jan; 11(1):22-42. PubMed ID: 26411303 [TBL] [Abstract][Full Text] [Related]
32. Directly Photoexcited Oxides for Photoelectrochemical Water Splitting. Pan L; Vlachopoulos N; Hagfeldt A ChemSusChem; 2019 Oct; 12(19):4337-4352. PubMed ID: 31478349 [TBL] [Abstract][Full Text] [Related]
33. Toward practical solar hydrogen production - an artificial photosynthetic leaf-to-farm challenge. Kim JH; Hansora D; Sharma P; Jang JW; Lee JS Chem Soc Rev; 2019 Apr; 48(7):1908-1971. PubMed ID: 30855624 [TBL] [Abstract][Full Text] [Related]
34. Turning Perspective in Photoelectrocatalytic Cells for Solar Fuels. Perathoner S; Centi G; Su D ChemSusChem; 2016 Feb; 9(4):345-57. PubMed ID: 26663767 [TBL] [Abstract][Full Text] [Related]
35. Photosynthetic hydrogen production by a hybrid complex of photosystem I and [NiFe]-hydrogenase. Krassen H; Schwarze A; Friedrich B; Ataka K; Lenz O; Heberle J ACS Nano; 2009 Dec; 3(12):4055-61. PubMed ID: 19947646 [TBL] [Abstract][Full Text] [Related]
36. Water Will Be the Coal of the Future-The Untamed Dream of Jules Verne for a Solar Fuel. Ryabchuk VK; Kuznetsov VN; Emeline AV; Artem'ev YM; Kataeva GV; Horikoshi S; Serpone N Molecules; 2016 Nov; 21(12):. PubMed ID: 27916848 [TBL] [Abstract][Full Text] [Related]
37. Graphene-based materials for hydrogen generation from light-driven water splitting. Xie G; Zhang K; Guo B; Liu Q; Fang L; Gong JR Adv Mater; 2013 Jul; 25(28):3820-39. PubMed ID: 23813606 [TBL] [Abstract][Full Text] [Related]
38. Photoelectrochemical hydrogen production from biomass derivatives and water. Lu X; Xie S; Yang H; Tong Y; Ji H Chem Soc Rev; 2014 Nov; 43(22):7581-93. PubMed ID: 24599050 [TBL] [Abstract][Full Text] [Related]
39. Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Abdi FF; Han L; Smets AH; Zeman M; Dam B; van de Krol R Nat Commun; 2013; 4():2195. PubMed ID: 23893238 [TBL] [Abstract][Full Text] [Related]
40. Optimization studies of bio-hydrogen production in a coupled microbial electrolysis-dye sensitized solar cell system. Ajayi FF; Kim KY; Chae KJ; Choi MJ; Chang IS; Kim IS Photochem Photobiol Sci; 2010 Mar; 9(3):349-56. PubMed ID: 20221461 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]