BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

970 related articles for article (PubMed ID: 26083154)

  • 1. MicroRNA-mediated regulation of gene expression in the response of rice plants to fungal elicitors.
    Baldrich P; Campo S; Wu MT; Liu TT; Hsing YI; San Segundo B
    RNA Biol; 2015; 12(8):847-63. PubMed ID: 26083154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide characterization of rice black streaked dwarf virus-responsive microRNAs in rice leaves and roots by small RNA and degradome sequencing.
    Sun Z; He Y; Li J; Wang X; Chen J
    Plant Cell Physiol; 2015 Apr; 56(4):688-99. PubMed ID: 25535197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of a novel microRNA (miRNA) from rice that targets an alternatively spliced transcript of the Nramp6 (Natural resistance-associated macrophage protein 6) gene involved in pathogen resistance.
    Campo S; Peris-Peris C; Siré C; Moreno AB; Donaire L; Zytnicki M; Notredame C; Llave C; San Segundo B
    New Phytol; 2013 Jul; 199(1):212-227. PubMed ID: 23627500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple rice microRNAs are involved in immunity against the blast fungus Magnaporthe oryzae.
    Li Y; Lu YG; Shi Y; Wu L; Xu YJ; Huang F; Guo XY; Zhang Y; Fan J; Zhao JQ; Zhang HY; Xu PZ; Zhou JM; Wu XJ; Wang PR; Wang WM
    Plant Physiol; 2014 Feb; 164(2):1077-92. PubMed ID: 24335508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and expression profiling of Vigna mungo microRNAs from leaf small RNA transcriptome by deep sequencing.
    Paul S; Kundu A; Pal A
    J Integr Plant Biol; 2014 Jan; 56(1):15-23. PubMed ID: 24138283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A transcriptome-wide study on the microRNA- and the Argonaute 1-enriched small RNA-mediated regulatory networks involved in plant leaf senescence.
    Qin J; Ma X; Yi Z; Tang Z; Meng Y
    Plant Biol (Stuttg); 2016 Mar; 18(2):197-205. PubMed ID: 26206233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide survey of rice microRNAs and microRNA-target pairs in the root of a novel auxin-resistant mutant.
    Meng Y; Huang F; Shi Q; Cao J; Chen D; Zhang J; Ni J; Wu P; Chen M
    Planta; 2009 Oct; 230(5):883-98. PubMed ID: 19655164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristic Dissection of
    Jia Y; Li C; Li Q; Liu P; Liu D; Liu Z; Wang Y; Jiang G; Zhai W
    Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 31991765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide identification of turnip mosaic virus-responsive microRNAs in non-heading Chinese cabbage by high-throughput sequencing.
    Wang Z; Jiang D; Zhang C; Tan H; Li Y; Lv S; Hou X; Cui X
    Gene; 2015 Oct; 571(2):178-87. PubMed ID: 26115771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating the regulatory roles of the microRNAs and the Argonaute 1-enriched small RNAs in plant metabolism.
    Qin J; Tang Z; Ma X; Meng Y
    Gene; 2017 Sep; 628():180-189. PubMed ID: 28698160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput sequencing and degradome analysis reveal neutral evolution of Cercis gigantea microRNAs and their targets.
    Guo W; Zhang Y; Wang Q; Zhan Y; Zhu G; Yu Q; Zhu L
    Planta; 2016 Jan; 243(1):83-95. PubMed ID: 26342708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic and Coordinated Expression Changes of Rice Small RNAs in Response to Xanthomonas oryzae pv. oryzae.
    Zhao YT; Wang M; Wang ZM; Fang RX; Wang XJ; Jia YT
    J Genet Genomics; 2015 Nov; 42(11):625-637. PubMed ID: 26674380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome-Wide Identification of miRNA Targets under Nitrogen Deficiency in Populus tomentosa Using Degradome Sequencing.
    Chen M; Bao H; Wu Q; Wang Y
    Int J Mol Sci; 2015 Jun; 16(6):13937-58. PubMed ID: 26096002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of novel miRNAs from drought tolerant rice variety Nagina 22.
    Mutum RD; Kumar S; Balyan S; Kansal S; Mathur S; Raghuvanshi S
    Sci Rep; 2016 Aug; 6():30786. PubMed ID: 27499088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uncovering leaf rust responsive miRNAs in wheat (Triticum aestivum L.) using high-throughput sequencing and prediction of their targets through degradome analysis.
    Kumar D; Dutta S; Singh D; Prabhu KV; Kumar M; Mukhopadhyay K
    Planta; 2017 Jan; 245(1):161-182. PubMed ID: 27699487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide analysis of microRNAs and their target genes related to leaf senescence of rice.
    Xu X; Bai H; Liu C; Chen E; Chen Q; Zhuang J; Shen B
    PLoS One; 2014; 9(12):e114313. PubMed ID: 25479006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome-wide identification of microRNA targets in rice.
    Li YF; Zheng Y; Addo-Quaye C; Zhang L; Saini A; Jagadeeswaran G; Axtell MJ; Zhang W; Sunkar R
    Plant J; 2010 Jun; 62(5):742-59. PubMed ID: 20202174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of 23 novel conserved microRNAs in three rice cultivars.
    Yang J; Zhang HM; Liu XY; Li J; Lv MF; Li PP; Dai LY; Chen JP
    Gene; 2014 Sep; 548(2):285-93. PubMed ID: 25038275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of miRNAs and their target genes in developing maize ears by combined small RNA and degradome sequencing.
    Liu H; Qin C; Chen Z; Zuo T; Yang X; Zhou H; Xu M; Cao S; Shen Y; Lin H; He X; Zhang Y; Li L; Ding H; Lübberstedt T; Zhang Z; Pan G
    BMC Genomics; 2014 Jan; 15():25. PubMed ID: 24422852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and analysis of miRNAs in IR56 rice in response to BPH infestations of different virulence levels.
    Nanda S; Yuan SY; Lai FX; Wang WX; Fu Q; Wan PJ
    Sci Rep; 2020 Nov; 10(1):19093. PubMed ID: 33154527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 49.