These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 26083322)

  • 21. A New Theoretical Method for Studying Effects of Microstructure on Effective Thermal Conductivity of Vermicular Graphite Cast Iron.
    Jiang A; Shao A; Song L; Hua M; Zheng H; Zhang X; Tian X; Lin X
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984037
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anisotropic Tuning of Graphite Thermal Conductivity by Lithium Intercalation.
    Qian X; Gu X; Dresselhaus MS; Yang R
    J Phys Chem Lett; 2016 Nov; 7(22):4744-4750. PubMed ID: 27806567
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Copper-based conductive composites with tailored thermal expansion.
    Della Gaspera E; Tucker R; Star K; Lan EH; Ju YS; Dunn B
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):10966-74. PubMed ID: 24175870
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermal Conduction in Vertically Aligned Copper Nanowire Arrays and Composites.
    Barako MT; Roy-Panzer S; English TS; Kodama T; Asheghi M; Kenny TW; Goodson KE
    ACS Appl Mater Interfaces; 2015 Sep; 7(34):19251-9. PubMed ID: 26284489
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synergistic enhancing effect for mechanical and electrical properties of tungsten copper composites using spark plasma infiltrating sintering of copper-coated graphene.
    Chen W; Dong L; Wang J; Zuo Y; Ren S; Fu Y
    Sci Rep; 2017 Dec; 7(1):17836. PubMed ID: 29259287
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aluminum/Graphene Thermal Interface Materials with Positive Temperature Dependence.
    Cai W; Lu Y; Wang C; Li Q; Zheng Y
    ACS Appl Mater Interfaces; 2024 Jul; 16(26):33993-34000. PubMed ID: 38910293
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermal Conductance of Copper-Graphene Interface: A Molecular Simulation.
    Zhu J; Huang S; Xie Z; Guo H; Yang H
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363179
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Achieving High Performances of Ultra-Low Thermal Expansion and High Thermal Conductivity in 0.5PbTiO
    Qiao Y; Xiao N; Song Y; Deng S; Huang R; Li L; Xing X; Chen J
    ACS Appl Mater Interfaces; 2020 Dec; 12(51):57228-57234. PubMed ID: 33296168
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Superior Thermal Conductivity of Graphene Film/Cu-Zr Alloy Composites for Thermal Management Applications.
    Chang G; Wang L; Zhang Y; Li X; Chen K; Kan D; Zhang W; Zhang S; Dong L; Li L; Bai X; Zhang H; Huo W
    ACS Appl Mater Interfaces; 2022 Dec; 14(50):56156-56168. PubMed ID: 36508197
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhancement of Thermal Management Performance of Copper Foil Using Additive-Free Graphene Coating.
    Hu B; Yuan H; Chen G
    Polymers (Basel); 2024 Jun; 16(13):. PubMed ID: 39000727
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High Thermal Conductivity of Flake Graphite Reinforced Polyethylene Composites Fabricated by the Powder Mixing Method and the Melt-Extruding Process.
    Liu Z; Tu R; Liao Q; Hu H; Yang J; He Y; Bian H; Ma L; Liu W
    Polymers (Basel); 2018 Jun; 10(7):. PubMed ID: 30960618
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigation of Formation Behaviour of Al-Cu Intermetallic Compounds in Al-50vol%Cu Composites Prepared by Spark Plasma Sintering under High Pressure.
    Kim D; Kim K; Kwon H
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33430346
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-Performance Thermally Conductive Phase Change Composites by Large-Size Oriented Graphite Sheets for Scalable Thermal Energy Harvesting.
    Wu S; Li T; Tong Z; Chao J; Zhai T; Xu J; Yan T; Wu M; Xu Z; Bao H; Deng T; Wang R
    Adv Mater; 2019 Dec; 31(49):e1905099. PubMed ID: 31621971
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly thermal conductive copper nanowire composites with ultralow loading: toward applications as thermal interface materials.
    Wang S; Cheng Y; Wang R; Sun J; Gao L
    ACS Appl Mater Interfaces; 2014 May; 6(9):6481-6. PubMed ID: 24716483
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermal conductivity and mechanical properties of graphite/Mg composite with a super-nano CaCO
    Zhang L; Deng KK; Nie KB; Wang CJ; Xu C; Shi QX; Liu Y; Wang J
    iScience; 2023 Apr; 26(4):106505. PubMed ID: 37070072
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermally conductive polyamide 6/carbon filler composites based on a hybrid filler system.
    Ha SM; Kwon OH; Oh YG; Kim YS; Lee SG; Won JC; Cho KS; Kim BG; Yoo Y
    Sci Technol Adv Mater; 2015 Dec; 16(6):065001. PubMed ID: 27877843
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermal Characteristics of Expandable Graphite-Wood Particle Composites.
    Chun K; Kim J; Rie D
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32560144
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermal Conductivity of Polymer-Based Composites with Magnetic Aligned Hexagonal Boron Nitride Platelets.
    Yuan C; Duan B; Li L; Xie B; Huang M; Luo X
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):13000-6. PubMed ID: 25996341
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Continuous Carbon Nanotube-Ultrathin Graphite Hybrid Foams for Increased Thermal Conductivity and Suppressed Subcooling in Composite Phase Change Materials.
    Kholmanov I; Kim J; Ou E; Ruoff RS; Shi L
    ACS Nano; 2015 Dec; 9(12):11699-707. PubMed ID: 26529570
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermal-Conductivity-Enhancing Copper-Plated Expanded Graphite/Paraffin Composite for Highly Stable Phase-Change Materials.
    Yan J; Han X; Dang Z; Li J; He X
    Chemphyschem; 2023 Dec; 24(23):e202300320. PubMed ID: 37743701
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.