BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 26083647)

  • 1. Traumatic brain injury and mitochondrial dysfunction.
    Hiebert JB; Shen Q; Thimmesch AR; Pierce JD
    Am J Med Sci; 2015 Aug; 350(2):132-8. PubMed ID: 26083647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic identification of oxidized mitochondrial proteins following experimental traumatic brain injury.
    Opii WO; Nukala VN; Sultana R; Pandya JD; Day KM; Merchant ML; Klein JB; Sullivan PG; Butterfield DA
    J Neurotrauma; 2007 May; 24(5):772-89. PubMed ID: 17518533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The potential role of mitochondria in pediatric traumatic brain injury.
    Robertson CL; Soane L; Siegel ZT; Fiskum G
    Dev Neurosci; 2006; 28(4-5):432-46. PubMed ID: 16943666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative detection of the expression of mitochondrial cytochrome c oxidase subunits mRNA in the cerebral cortex after experimental traumatic brain injury.
    Dai W; Cheng HL; Huang RQ; Zhuang Z; Shi JX
    Brain Res; 2009 Jan; 1251():287-95. PubMed ID: 19063873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial dysfunction early after traumatic brain injury in immature rats.
    Robertson CL; Saraswati M; Fiskum G
    J Neurochem; 2007 Jun; 101(5):1248-57. PubMed ID: 17403141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impaired cerebral mitochondrial function after traumatic brain injury in humans.
    Verweij BH; Muizelaar JP; Vinas FC; Peterson PL; Xiong Y; Lee CP
    J Neurosurg; 2000 Nov; 93(5):815-20. PubMed ID: 11059663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial permeability transition in CNS trauma: cause or effect of neuronal cell death?
    Sullivan PG; Rabchevsky AG; Waldmeier PC; Springer JE
    J Neurosci Res; 2005 Jan 1-15; 79(1-2):231-9. PubMed ID: 15573402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seawater Immersion Aggravates Early Mitochondrial Dysfunction and Increases Neuronal Apoptosis After Traumatic Brain Injury.
    Yi L; Juan W; Gang C; Leiming Z; Jianning Z
    Cell Mol Neurobiol; 2020 Apr; 40(3):447-457. PubMed ID: 31667702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial participation in ischemic and traumatic neural cell death.
    Fiskum G
    J Neurotrauma; 2000 Oct; 17(10):843-55. PubMed ID: 11063052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial bioenergetic alterations after focal traumatic brain injury in the immature brain.
    Kilbaugh TJ; Karlsson M; Byro M; Bebee A; Ralston J; Sullivan S; Duhaime AC; Hansson MJ; Elmér E; Margulies SS
    Exp Neurol; 2015 Sep; 271():136-44. PubMed ID: 26028309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclosporin A attenuates acute mitochondrial dysfunction following traumatic brain injury.
    Sullivan PG; Thompson MB; Scheff SW
    Exp Neurol; 1999 Nov; 160(1):226-34. PubMed ID: 10630207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of traumatic brain injury in human brains reveals distinct cellular and molecular changes in contusion and pericontusion.
    Harish G; Mahadevan A; Pruthi N; Sreenivasamurthy SK; Puttamallesh VN; Keshava Prasad TS; Shankar SK; Srinivas Bharath MM
    J Neurochem; 2015 Jul; 134(1):156-72. PubMed ID: 25712633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of mitochondrial transition pore, and its modulation, in traumatic brain injury and delayed neurodegeneration after TBI.
    Mazzeo AT; Beat A; Singh A; Bullock MR
    Exp Neurol; 2009 Aug; 218(2):363-70. PubMed ID: 19481077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Traumatic brain injury-induced changes in gene expression and functional activity of mitochondrial cytochrome C oxidase.
    Harris LK; Black RT; Golden KM; Reeves TM; Povlishock JT; Phillips LL
    J Neurotrauma; 2001 Oct; 18(10):993-1009. PubMed ID: 11686499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time course of post-traumatic mitochondrial oxidative damage and dysfunction in a mouse model of focal traumatic brain injury: implications for neuroprotective therapy.
    Singh IN; Sullivan PG; Deng Y; Mbye LH; Hall ED
    J Cereb Blood Flow Metab; 2006 Nov; 26(11):1407-18. PubMed ID: 16538231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondria in traumatic brain injury and mitochondrial-targeted multipotential therapeutic strategies.
    Cheng G; Kong RH; Zhang LM; Zhang JN
    Br J Pharmacol; 2012 Oct; 167(4):699-719. PubMed ID: 23003569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protective effects of hydrogen-rich saline in a rat model of traumatic brain injury via reducing oxidative stress.
    Ji X; Tian Y; Xie K; Liu W; Qu Y; Fei Z
    J Surg Res; 2012 Nov; 178(1):e9-16. PubMed ID: 22475349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The optimal dosage and window of opportunity to maintain mitochondrial homeostasis following traumatic brain injury using the uncoupler FCCP.
    Pandya JD; Pauly JR; Sullivan PG
    Exp Neurol; 2009 Aug; 218(2):381-9. PubMed ID: 19477175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidative stress and mitochondrial dysfunction following traumatic brain injury: From mechanistic view to targeted therapeutic opportunities.
    Hakiminia B; Alikiaii B; Khorvash F; Mousavi S
    Fundam Clin Pharmacol; 2022 Aug; 36(4):612-662. PubMed ID: 35118714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Traumatic brain injury and NADPH oxidase: a deep relationship.
    Angeloni C; Prata C; Dalla Sega FV; Piperno R; Hrelia S
    Oxid Med Cell Longev; 2015; 2015():370312. PubMed ID: 25918580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.