BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 26083784)

  • 1. Inhibition of hydroxyapatite growth by casein, a potential salivary phosphoprotein homologue.
    Romero MJ; Nakashima S; Nikaido T; Ichinose S; Sadr A; Tagami J
    Eur J Oral Sci; 2015 Aug; 123(4):288-96. PubMed ID: 26083784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro dentine remineralization with a potential salivary phosphoprotein homologue.
    Romero MJ; Nakashima S; Nikaido T; Sadr A; Tagami J
    Arch Oral Biol; 2016 Aug; 68():35-42. PubMed ID: 27054701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic mineralisation of phosphorylated dentine by CPP-ACP.
    Cao Y; Mei ML; Xu J; Lo EC; Li Q; Chu CH
    J Dent; 2013 Sep; 41(9):818-25. PubMed ID: 23810733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging analysis of early DMP1 mediated dentine remineralization.
    Bedran-Russo AK; Ravindran S; George A
    Arch Oral Biol; 2013 Mar; 58(3):254-60. PubMed ID: 23107046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption and interactions of dentine phosphoprotein with hydroxyapatite and collagen.
    Milan AM; Sugars RV; Embery G; Waddington RJ
    Eur J Oral Sci; 2006 Jun; 114(3):223-31. PubMed ID: 16776772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mode of action studies on the formation of enamel minerals from a novel toothpaste containing calcium silicate and sodium phosphate salts.
    Sun Y; Li X; Deng Y; Sun JN; Tao D; Chen H; Hu Q; Liu R; Liu W; Feng X; Wang J; Carvell M; Joiner A
    J Dent; 2014 Jun; 42 Suppl 1():S30-8. PubMed ID: 24993853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remineralization potential of fully demineralized dentin infiltrated with silica and hydroxyapatite nanoparticles.
    Besinis A; van Noort R; Martin N
    Dent Mater; 2014 Mar; 30(3):249-62. PubMed ID: 24444789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The addition of nano-sized hydroxyapatite to a sports drink to inhibit dental erosion: in vitro study using bovine enamel.
    Min JH; Kwon HK; Kim BI
    J Dent; 2011 Sep; 39(9):629-35. PubMed ID: 21763390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioactivity of pseudowollastonite in human saliva.
    De Aza PN; Luklinska ZB; Anseau MR; Guitian F; De Aza S
    J Dent; 1999 Feb; 27(2):107-13. PubMed ID: 10071467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal and compositional characteristics of salivary protein adsorption to hydroxyapatite.
    Lamkin MS; Arancillo AA; Oppenheim FG
    J Dent Res; 1996 Feb; 75(2):803-8. PubMed ID: 8655778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DMP1-derived peptides promote remineralization of human dentin.
    Padovano JD; Ravindran S; Snee PT; Ramachandran A; Bedran-Russo AK; George A
    J Dent Res; 2015 Apr; 94(4):608-14. PubMed ID: 25694469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption and bioactivity studies of albumin onto hydroxyapatite surface.
    Mavropoulos E; Costa AM; Costa LT; Achete CA; Mello A; Granjeiro JM; Rossi AM
    Colloids Surf B Biointerfaces; 2011 Mar; 83(1):1-9. PubMed ID: 21109408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro studies on the effect of sodium tripolyphosphate on the interactions of stain and salivary protein with hydroxyapatite.
    Shellis RP; Addy M; Rees GD
    J Dent; 2005 Apr; 33(4):313-24. PubMed ID: 15781139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategies for a direct characterization of phosphoproteins on hydroxyapatite surfaces.
    Sotres J; Barrantes A; Lindh L; Arnebrant T
    Caries Res; 2014; 48(2):98-110. PubMed ID: 24296726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between quantitative assessments of salivary buffering capacity and ion activity product for hydroxyapatite in relation to cariogenic potential.
    Aiuchi H; Kitasako Y; Fukuda Y; Nakashima S; Burrow MF; Tagami J
    Aust Dent J; 2008 Jun; 53(2):167-71. PubMed ID: 18494973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of apatite crystal growth by the amino-terminal segment of human salivary acidic proline-rich proteins.
    Aoba T; Moreno EC; Hay DI
    Calcif Tissue Int; 1984 Dec; 36(6):651-8. PubMed ID: 6099209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physicochemical characterization of casein phosphopeptide-amorphous calcium phosphate nanocomplexes.
    Cross KJ; Huq NL; Palamara JE; Perich JW; Reynolds EC
    J Biol Chem; 2005 Apr; 280(15):15362-9. PubMed ID: 15657053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Salivary acquired pellicle-inspired DpSpSEEKC peptide for the restoration of demineralized tooth enamel.
    Yang Y; Yang B; Li M; Wang Y; Yang X; Li J
    Biomed Mater; 2017 Mar; 12(2):025007. PubMed ID: 28296648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of human salivary proteins on the precipitation kinetics of calcium phosphate.
    Moreno EC; Varughese K; Hay DI
    Calcif Tissue Int; 1979 Aug; 28(1):7-16. PubMed ID: 115554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational changes in salivary proline-rich protein 1 upon adsorption to calcium phosphate crystals.
    Elangovan S; Margolis HC; Oppenheim FG; Beniash E
    Langmuir; 2007 Oct; 23(22):11200-5. PubMed ID: 17880251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.