These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 26083966)

  • 61. Bacille-Calmette-Guerin modulates human macrophage and dendritic cell response to SARS-CoV-2 S-glycoprotein.
    Ambe RC; Bhalla S; Alvarado A; Barragan J; Cervantes J
    Infect Med (Beijing); 2023 Sep; 2(3):241-245. PubMed ID: 38073885
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Applications and safety of gold nanoparticles as therapeutic devices in clinical trials.
    Yao L; Bojic D; Liu M
    J Pharm Anal; 2023 Sep; 13(9):960-967. PubMed ID: 37842655
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Regulation of toll-like receptor (TLR) signaling pathways in atherosclerosis: from mechanisms to targeted therapeutics.
    Jin M; Fang J; Wang JJ; Shao X; Xu SW; Liu PQ; Ye WC; Liu ZP
    Acta Pharmacol Sin; 2023 Dec; 44(12):2358-2375. PubMed ID: 37550526
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Arthritic Microenvironment-Dictated Fate Decisions for Stem Cells in Cartilage Repair.
    He S; Deng H; Li P; Hu J; Yang Y; Xu Z; Liu S; Guo W; Guo Q
    Adv Sci (Weinh); 2023 Sep; 10(27):e2207715. PubMed ID: 37518822
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Dual Functioned Hexapeptide-Coated Lipid-Core Nanomicelles Suppress Toll-Like Receptor-Mediated Inflammatory Responses through Endotoxin Scavenging and Endosomal pH Modulation.
    Ji Y; Sun L; Liu Y; Li Y; Li T; Gong J; Liu X; Ma H; Wang J; Chen B; Fung SY; Yang H
    Adv Sci (Weinh); 2023 Jul; 10(19):e2301230. PubMed ID: 37078808
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Potentialities of bioinspired metal and metal oxide nanoparticles in biomedical sciences.
    Singh KR; Nayak V; Singh J; Singh AK; Singh RP
    RSC Adv; 2021 Jul; 11(40):24722-24746. PubMed ID: 35481029
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Microfluidic-Generated Immunomodulatory Nanoparticles and Formulation-Dependent Effects on Lipopolysaccharide-Induced Macrophage Inflammation.
    Truong N; Black SK; Shaw J; Scotland BL; Pearson RM
    AAPS J; 2021 Dec; 24(1):6. PubMed ID: 34859324
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Nano-Enabled Reposition of Proton Pump Inhibitors for TLR Inhibition: Toward A New Targeted Nanotherapy for Acute Lung Injury.
    Sun L; Liu Y; Liu X; Wang R; Gong J; Saferali A; Gao W; Ma A; Ma H; Turvey SE; Fung SY; Yang H
    Adv Sci (Weinh); 2022 Jan; 9(3):e2104051. PubMed ID: 34816630
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The Modulatory Activity of Tryptophan Displaying Nanodevices on Macrophage Activation for Preventing Acute Lung Injury.
    Sun L; Wang R; Wu C; Gong J; Ma H; Fung SY; Yang H
    Front Immunol; 2021; 12():750128. PubMed ID: 34659253
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Nanomedicine for acute respiratory distress syndrome: The latest application, targeting strategy, and rational design.
    Qiao Q; Liu X; Yang T; Cui K; Kong L; Yang C; Zhang Z
    Acta Pharm Sin B; 2021 Oct; 11(10):3060-3091. PubMed ID: 33977080
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Nanotherapeutics in the treatment of acute respiratory distress syndrome.
    Prasanna P; Rathee S; Upadhyay A; Sulakshana S
    Life Sci; 2021 Jul; 276():119428. PubMed ID: 33785346
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Administration route governs the therapeutic efficacy, biodistribution and macrophage targeting of anti-inflammatory nanoparticles in the lung.
    Wang L; Rao Y; Liu X; Sun L; Gong J; Zhang H; Shen L; Bao A; Yang H
    J Nanobiotechnology; 2021 Feb; 19(1):56. PubMed ID: 33632244
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Advances in sepsis diagnosis and management: a paradigm shift towards nanotechnology.
    Pant A; Mackraj I; Govender T
    J Biomed Sci; 2021 Jan; 28(1):6. PubMed ID: 33413364
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Neutrophils and Macrophages as Targets for Development of Nanotherapeutics in Inflammatory Diseases.
    Su Y; Gao J; Kaur P; Wang Z
    Pharmaceutics; 2020 Dec; 12(12):. PubMed ID: 33348630
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Biomaterial-Driven Immunomodulation: Cell Biology-Based Strategies to Mitigate Severe Inflammation and Sepsis.
    Lasola JJM; Kamdem H; McDaniel MW; Pearson RM
    Front Immunol; 2020; 11():1726. PubMed ID: 32849612
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Designing inorganic nanomaterials for vaccines and immunotherapies.
    Hess KL; Medintz IL; Jewell CM
    Nano Today; 2019 Aug; 27():73-98. PubMed ID: 32292488
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Manipulation of macrophage polarization by peptide-coated gold nanoparticles and its protective effects on acute lung injury.
    Wang L; Zhang H; Sun L; Gao W; Xiong Y; Ma A; Liu X; Shen L; Li Q; Yang H
    J Nanobiotechnology; 2020 Feb; 18(1):38. PubMed ID: 32101146
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Cargo-less nanoparticles program innate immune cell responses to toll-like receptor activation.
    Casey LM; Kakade S; Decker JT; Rose JA; Deans K; Shea LD; Pearson RM
    Biomaterials; 2019 Oct; 218():119333. PubMed ID: 31301576
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Hypoxic Radioresistance: Can ROS Be the Key to Overcome It?
    Wang H; Jiang H; Van De Gucht M; De Ridder M
    Cancers (Basel); 2019 Jan; 11(1):. PubMed ID: 30669417
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Engineering Immune Tolerance with Biomaterials.
    Gammon JM; Jewell CM
    Adv Healthc Mater; 2019 Feb; 8(4):e1801419. PubMed ID: 30605264
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.