BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 26084567)

  • 1. Multi-site phosphorylation regulates NeuroD4 activity during primary neurogenesis: a conserved mechanism amongst proneural proteins.
    Hardwick LJ; Philpott A
    Neural Dev; 2015 Jun; 10():15. PubMed ID: 26084567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-terminal phosphorylation of xHes1 controls inhibition of primary neurogenesis in Xenopus.
    Hardwick LJA; Philpott A
    Biochem Biophys Res Commun; 2019 Feb; 509(2):557-563. PubMed ID: 30600182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell cycle-regulated multi-site phosphorylation of Neurogenin 2 coordinates cell cycling with differentiation during neurogenesis.
    Ali F; Hindley C; McDowell G; Deibler R; Jones A; Kirschner M; Guillemot F; Philpott A
    Development; 2011 Oct; 138(19):4267-77. PubMed ID: 21852393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorylation in intrinsically disordered regions regulates the activity of Neurogenin2.
    McDowell GS; Hindley CJ; Lippens G; Landrieu I; Philpott A
    BMC Biochem; 2014 Nov; 15():24. PubMed ID: 25374254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The phosphorylation status of Ascl1 is a key determinant of neuronal differentiation and maturation in vivo and in vitro.
    Ali FR; Cheng K; Kirwan P; Metcalfe S; Livesey FJ; Barker RA; Philpott A
    Development; 2014 Jun; 141(11):2216-24. PubMed ID: 24821983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ascl1 phospho-status regulates neuronal differentiation in a Xenopus developmental model of neuroblastoma.
    Wylie LA; Hardwick LJ; Papkovskaia TD; Thiele CJ; Philpott A
    Dis Model Mech; 2015 May; 8(5):429-41. PubMed ID: 25786414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative expression analysis of the neurogenins in Xenopus tropicalis and Xenopus laevis.
    Nieber F; Pieler T; Henningfeld KA
    Dev Dyn; 2009 Feb; 238(2):451-8. PubMed ID: 19161242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hes6 is required for the neurogenic activity of neurogenin and NeuroD.
    Murai K; Philpott A; Jones PH
    PLoS One; 2011; 6(11):e27880. PubMed ID: 22114720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. C8orf46 homolog encodes a novel protein Vexin that is required for neurogenesis in Xenopus laevis.
    Moore KB; Logan MA; Aldiri I; Roberts JM; Steele M; Vetter ML
    Dev Biol; 2018 May; 437(1):27-40. PubMed ID: 29518376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction between opposing modes of phospho-regulation of the proneural proteins Ascl1 and Ngn2.
    Hardwick LJA; Philpott A
    Wellcome Open Res; 2018; 3():129. PubMed ID: 30430141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of shared transcriptional targets for the proneural bHLH factors Xath5 and XNeuroD.
    Logan MA; Steele MR; Van Raay TJ; Vetter ML
    Dev Biol; 2005 Sep; 285(2):570-83. PubMed ID: 16112102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-site phospho-regulation of proneural transcription factors controls proliferation versus differentiation in development and reprogramming.
    Philpott A
    Neurogenesis (Austin); 2015; 2(1):e1049733. PubMed ID: 27502783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-site phosphorylation controls the neurogenic and myogenic activity of E47.
    Hardwick LJA; Davies JD; Philpott A
    Biochem Biophys Res Commun; 2019 Mar; 511(1):111-116. PubMed ID: 30773262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hes6 acts in a positive feedback loop with the neurogenins to promote neuronal differentiation.
    Koyano-Nakagawa N; Kim J; Anderson D; Kintner C
    Development; 2000 Oct; 127(19):4203-16. PubMed ID: 10976052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Post-translational Control of the Temporal Dynamics of Transcription Factor Activity Regulates Neurogenesis.
    Quan XJ; Yuan L; Tiberi L; Claeys A; De Geest N; Yan J; van der Kant R; Xie WR; Klisch TJ; Shymkowitz J; Rousseau F; Bollen M; Beullens M; Zoghbi HY; Vanderhaeghen P; Hassan BA
    Cell; 2016 Jan; 164(3):460-75. PubMed ID: 26824657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurogenin and NeuroD direct transcriptional targets and their regulatory enhancers.
    Seo S; Lim JW; Yellajoshyula D; Chang LW; Kroll KL
    EMBO J; 2007 Dec; 26(24):5093-108. PubMed ID: 18007592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. KDM3A-mediated demethylation of histone H3 lysine 9 facilitates the chromatin binding of Neurog2 during neurogenesis.
    Lin H; Zhu X; Chen G; Song L; Gao L; Khand AA; Chen Y; Lin G; Tao Q
    Development; 2017 Oct; 144(20):3674-3685. PubMed ID: 29042477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct patterns of downstream target activation are specified by the helix-loop-helix domain of proneural basic helix-loop-helix transcription factors.
    Talikka M; Perez SE; Zimmerman K
    Dev Biol; 2002 Jul; 247(1):137-48. PubMed ID: 12074558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of motor neuron specification by phosphorylation of neurogenin 2.
    Ma YC; Song MR; Park JP; Henry Ho HY; Hu L; Kurtev MV; Zieg J; Ma Q; Pfaff SL; Greenberg ME
    Neuron; 2008 Apr; 58(1):65-77. PubMed ID: 18400164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. X-ngnr-1 and Xath3 promote ectopic expression of sensory neuron markers in the neurula ectoderm and have distinct inducing properties in the retina.
    Perron M; Opdecamp K; Butler K; Harris WA; Bellefroid EJ
    Proc Natl Acad Sci U S A; 1999 Dec; 96(26):14996-5001. PubMed ID: 10611326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.