BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 2608460)

  • 1. Synthetic and high-field NMR study of branched tri-, tetra-, penta-, and heptaribonucleotides modelling the lariat-intron in group II splicing.
    Zhou XX; Vial JM; Sandström A; Remaud G; Koole LH; Chattopadhyaya J
    Nucleic Acids Symp Ser; 1989; (21):127-8. PubMed ID: 2608460
    [No Abstract]   [Full Text] [Related]  

  • 2. Synthesis of branched nona and deca-RNA modelling the lariat formed in pre-mRNA processing reaction (splicing).
    Sund C; Földesi A; Yamakage S; Chattopadhyaya J
    Nucleic Acids Symp Ser; 1991; (24):9-12. PubMed ID: 1726756
    [No Abstract]   [Full Text] [Related]  

  • 3. Specificity of Mg2+ binding at the Group II intron branch site.
    Schlatterer JC; Greenbaum NL
    Biophys Chem; 2008 Aug; 136(2-3):96-100. PubMed ID: 18555583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of the P1 helix from group I self-splicing introns.
    Allain FH; Varani G
    J Mol Biol; 1995 Jul; 250(3):333-53. PubMed ID: 7608979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. U2-U6 RNA folding reveals a group II intron-like domain and a four-helix junction.
    Sashital DG; Cornilescu G; McManus CJ; Brow DA; Butcher SE
    Nat Struct Mol Biol; 2004 Dec; 11(12):1237-42. PubMed ID: 15543154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural insights into group II intron catalysis and branch-site selection.
    Zhang L; Doudna JA
    Science; 2002 Mar; 295(5562):2084-8. PubMed ID: 11859154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unexpected metal ion requirements specific for catalysis of the branching reaction in a group II intron.
    Dème E; Nolte A; Jacquier A
    Biochemistry; 1999 Mar; 38(10):3157-67. PubMed ID: 10074371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Group II intron in Bacillus cereus has an unusual 3' extension and splices 56 nucleotides downstream of the predicted site.
    Stabell FB; Tourasse NJ; Ravnum S; Kolstø AB
    Nucleic Acids Res; 2007; 35(5):1612-23. PubMed ID: 17301069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of plastid unspliced transcripts and lariat group II introns.
    del Campo EM; Casano LM
    Biochimie; 2008 Mar; 90(3):474-83. PubMed ID: 17999921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Syntheses of branched trinucleotides and their conformational analysis by 1H-NMR spectroscopy.
    Vial JM; Remaud G; Balgobin N; Chattopadhyaya J
    Nucleic Acids Symp Ser; 1987; (18):109-12. PubMed ID: 3697109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Group I self-splicing introns in both large and small subunit rRNA genes of Chlorella.
    Aimi T; Yamada T; Murooka Y
    Nucleic Acids Symp Ser; 1993; (29):159-60. PubMed ID: 8247750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple physical forms of excised group II intron RNAs in wheat mitochondria.
    Li-Pook-Than J; Bonen L
    Nucleic Acids Res; 2006; 34(9):2782-90. PubMed ID: 16717283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The receptor for branch-site docking within a group II intron active site.
    Hamill S; Pyle AM
    Mol Cell; 2006 Sep; 23(6):831-40. PubMed ID: 16973435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin and evolution of the chloroplast trnK (matK) intron: a model for evolution of group II intron RNA structures.
    Hausner G; Olson R; Simon D; Johnson I; Sanders ER; Karol KG; McCourt RM; Zimmerly S
    Mol Biol Evol; 2006 Feb; 23(2):380-91. PubMed ID: 16267141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic stability and structural features of the J4/5 loop in a Pneumocystis carinii group I intron.
    Schroeder SJ; Fountain MA; Kennedy SD; Lukavsky PJ; Puglisi JD; Krugh TR; Turner DH
    Biochemistry; 2003 Dec; 42(48):14184-96. PubMed ID: 14640686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An RNA conformational change between the two chemical steps of group II self-splicing.
    Chanfreau G; Jacquier A
    EMBO J; 1996 Jul; 15(13):3466-76. PubMed ID: 8670849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deoxyribozymes that synthesize branched and lariat RNA.
    Wang Y; Silverman SK
    J Am Chem Soc; 2003 Jun; 125(23):6880-1. PubMed ID: 12783536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tight binding of the 5' exon to domain I of a group II self-splicing intron requires completion of the intron active site.
    Costa M; Michel F
    EMBO J; 1999 Feb; 18(4):1025-37. PubMed ID: 10022844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A chloroplast group I intron undergoes the first step of reverse splicing into host cytoplasmic 5.8 S rRNA. Implications for intron-mediated RNA recombination, intron transposition and 5.8 S rRNA structure.
    Thompson AJ; Herrin DL
    J Mol Biol; 1994 Feb; 236(2):455-68. PubMed ID: 8107133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A chemical phylogeny of group I introns based upon interference mapping of a bacterial ribozyme.
    Strauss-Soukup JK; Strobel SA
    J Mol Biol; 2000 Sep; 302(2):339-58. PubMed ID: 10970738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.