These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 2608460)

  • 21. RNA splicing: group I intron crystal structures reveal the basis of splice site selection and metal ion catalysis.
    Stahley MR; Strobel SA
    Curr Opin Struct Biol; 2006 Jun; 16(3):319-26. PubMed ID: 16697179
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Function of the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase in RNA splicing. Role of the idiosyncratic N-terminal extension and different modes of interaction with different group I introns.
    Mohr G; Rennard R; Cherniack AD; Stryker J; Lambowitz AM
    J Mol Biol; 2001 Mar; 307(1):75-92. PubMed ID: 11243805
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A unique group of self-splicing introns in bacteriophage T4.
    Khan AU; Ajamaluddin M; Ahmad M
    Indian J Biochem Biophys; 2001 Oct; 38(5):289-93. PubMed ID: 11886074
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A tyrosyl-tRNA synthetase protein induces tertiary folding of the group I intron catalytic core.
    Caprara MG; Mohr G; Lambowitz AM
    J Mol Biol; 1996 Apr; 257(3):512-31. PubMed ID: 8648621
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multiple tertiary interactions involving domain II of group II self-splicing introns.
    Costa M; Déme E; Jacquier A; Michel F
    J Mol Biol; 1997 Apr; 267(3):520-36. PubMed ID: 9126835
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of mutations at the lariat branch acceptor site on beta-globin pre-mRNA splicing in vitro.
    Hornig H; Aebi M; Weissmann C
    Nature; 1986 Dec 11-17; 324(6097):589-91. PubMed ID: 3641062
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Housekeeping recA gene interrupted by group II intron in the thermophilic Geobacillus kaustophilus.
    Chee GJ; Takami H
    Gene; 2005 Dec; 363():211-20. PubMed ID: 16242272
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Suppressors of cis-acting splicing-deficient mutations that affect the ribozyme core of a group II intron.
    Robineau S; Bergantino E; Carignani G; Michel F; Netter P
    J Mol Biol; 1997 Apr; 267(3):537-47. PubMed ID: 9126836
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A comprehensive characterization of a group IB intron and its encoded maturase reveals that protein-assisted splicing requires an almost intact intron RNA.
    Geese WJ; Waring RB
    J Mol Biol; 2001 May; 308(4):609-22. PubMed ID: 11350164
    [TBL] [Abstract][Full Text] [Related]  

  • 30. FTIR spectroscopic studies of oligonucleotides that model a triple-helical domain in self-splicing group I introns.
    Sarkar M; Dornberger U; Rozners E; Fritzsche H; Strömberg R; Gräslund A
    Biochemistry; 1997 Dec; 36(49):15463-71. PubMed ID: 9398275
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solid-phase synthesis of branched oligoribonucleotides related to messenger RNA splicing intermediates.
    Damha MJ; Ganeshan K; Hudson RH; Zabarylo SV
    Nucleic Acids Res; 1992 Dec; 20(24):6565-73. PubMed ID: 1480476
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regiospecific solid-phase synthesis of branched oligoribonucleotides that mimic intronic lariat RNA intermediates.
    Katolik A; Johnsson R; Montemayor E; Lackey JG; Hart PJ; Damha MJ
    J Org Chem; 2014 Feb; 79(3):963-75. PubMed ID: 24401015
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A spliced intron accumulates as a lariat in the nucleus of T cells.
    Qian L; Vu MN; Carter M; Wilkinson MF
    Nucleic Acids Res; 1992 Oct; 20(20):5345-50. PubMed ID: 1437551
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemical synthesis of r(GCAUGC) for high-resolution 1H-NMR studies.
    Happ E; Scalfi-Happ C; Clore GM; Gronenborn AM
    Nucleic Acids Symp Ser; 1987; (18):265-8. PubMed ID: 2447568
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Why do all lariat RNA introns have adenosine as the branch-point nucleotide? Conformational study of naturally-occurring branched trinucleotides and its eleven analogues by 1H-, 31P-NMR and CD spectroscopy.
    Remaud G; Balgobin N; Sandström A; Vial JM; Koole LH; Buck HM; Drake AF; Zhou XX; Chattopadhyaya J
    J Biochem Biophys Methods; 1989 Feb; 18(1):1-35. PubMed ID: 2470804
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A general two-step strategy to synthesize lariat RNAs.
    Wang Y; Silverman SK
    RNA; 2006 Feb; 12(2):313-21. PubMed ID: 16373486
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Automated H-phosphonate synthesis of oligoribonucleotides using 2'-O-tetrahydropyranyl protective group].
    Ven'iaminova AG; Gorn VV; Zenkova MA; Komarova NI; Repkova MN
    Bioorg Khim; 1990 Jul; 16(7):941-50. PubMed ID: 2242055
    [No Abstract]   [Full Text] [Related]  

  • 38. Experimental testing of theories of an early RNA world.
    Ellington AD
    Methods Enzymol; 1993; 224():646-64. PubMed ID: 7505384
    [No Abstract]   [Full Text] [Related]  

  • 39. Intron splicing and intron-mediated enhanced expression in monocots.
    Sinibaldi RM; Mettler IJ
    Prog Nucleic Acid Res Mol Biol; 1992; 42():229-57. PubMed ID: 1574588
    [No Abstract]   [Full Text] [Related]  

  • 40. Chemical synthesis of branched RNA.
    Kierzek R; Kopp DW; Edmonds M; Caruthers MH
    Nucleic Acids Res; 1986 Jun; 14(12):4751-64. PubMed ID: 2425338
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.