These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 26084901)

  • 1. MATLAB-based automated patch-clamp system for awake behaving mice.
    Desai NS; Siegel JJ; Taylor W; Chitwood RA; Johnston D
    J Neurophysiol; 2015 Aug; 114(2):1331-45. PubMed ID: 26084901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-neuron intracellular recording in vivo via interacting autopatching robots.
    Kodandaramaiah SB; Flores FJ; Holst GL; Singer AC; Han X; Brown EN; Boyden ES; Forest CR
    Elife; 2018 Jan; 7():. PubMed ID: 29297466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of Automated Image-guided Patch Clamp for the Study of Neurons in Brain Slices.
    Wu Q; Chubykin AA
    J Vis Exp; 2017 Jul; (125):. PubMed ID: 28784955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autonomous patch-clamp robot for functional characterization of neurons in vivo: development and application to mouse visual cortex.
    Holst GL; Stoy W; Yang B; Kolb I; Kodandaramaiah SB; Li L; Knoblich U; Zeng H; Haider B; Boyden ES; Forest CR
    J Neurophysiol; 2019 Jun; 121(6):2341-2357. PubMed ID: 30969898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated in vivo patch-clamp evaluation of extracellular multielectrode array spike recording capability.
    Allen BD; Moore-Kochlacs C; Bernstein JG; Kinney JP; Scholvin J; Seoane LF; Chronopoulos C; Lamantia C; Kodandaramaiah SB; Tegmark M; Boyden ES
    J Neurophysiol; 2018 Nov; 120(5):2182-2200. PubMed ID: 29995597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robotic Automation of In Vivo Two-Photon Targeted Whole-Cell Patch-Clamp Electrophysiology.
    Annecchino LA; Morris AR; Copeland CS; Agabi OE; Chadderton P; Schultz SR
    Neuron; 2017 Aug; 95(5):1048-1055.e3. PubMed ID: 28858615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catch and Patch: A Pipette-Based Approach for Automating Patch Clamp That Enables Cell Selection and Fast Compound Application.
    Danker T; Braun F; Silbernagl N; Guenther E
    Assay Drug Dev Technol; 2016 Mar; 14(2):144-55. PubMed ID: 26991363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Vivo Patch-Clamp Recording in Awake Head-Fixed Rodents.
    Lee D; Lee AK
    Cold Spring Harb Protoc; 2017 Apr; 2017(4):pdb.prot095802. PubMed ID: 28373496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated whole-cell patch-clamp electrophysiology of neurons in vivo.
    Kodandaramaiah SB; Franzesi GT; Chow BY; Boyden ES; Forest CR
    Nat Methods; 2012 Jun; 9(6):585-7. PubMed ID: 22561988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visually Evoked 3-5 Hz Membrane Potential Oscillations Reduce the Responsiveness of Visual Cortex Neurons in Awake Behaving Mice.
    Einstein MC; Polack PO; Tran DT; Golshani P
    J Neurosci; 2017 May; 37(20):5084-5098. PubMed ID: 28432140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of autopatching with automated pipette and cell detection in vitro.
    Wu 吴秋雨 Q; Kolb I; Callahan BM; Su Z; Stoy W; Kodandaramaiah SB; Neve R; Zeng H; Boyden ES; Forest CR; Chubykin AA
    J Neurophysiol; 2016 Oct; 116(4):1564-1578. PubMed ID: 27385800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whole-cell patch-clamp recordings in freely moving animals.
    Lee AK; Epsztein J; Brecht M
    Methods Mol Biol; 2014; 1183():263-76. PubMed ID: 25023315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microchip amplifier for in vitro, in vivo, and automated whole cell patch-clamp recording.
    Harrison RR; Kolb I; Kodandaramaiah SB; Chubykin AA; Yang A; Bear MF; Boyden ES; Forest CR
    J Neurophysiol; 2015 Feb; 113(4):1275-82. PubMed ID: 25429119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Minimized cell usage for stem cell-derived and primary cells on an automated patch clamp system.
    Becker N; Stoelzle S; Göpel S; Guinot D; Mumm P; Haarmann C; Malan D; Bohlen H; Kossolov E; Kettenhofen R; George M; Fertig N; Brüggemann A
    J Pharmacol Toxicol Methods; 2013; 68(1):82-7. PubMed ID: 23567076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Closed-Loop Real-Time Imaging Enables Fully Automated Cell-Targeted Patch-Clamp Neural Recording In Vivo.
    Suk HJ; van Welie I; Kodandaramaiah SB; Allen B; Forest CR; Boyden ES
    Neuron; 2017 Aug; 95(5):1037-1047.e11. PubMed ID: 28858614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Vivo Patch-Clamp Studies.
    Zhou Y; Li H; Xiao Z
    Methods Mol Biol; 2021; 2188():259-271. PubMed ID: 33119856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Culturing and electrophysiology of cells on NRCC patch-clamp chips.
    Py C; Martina M; Monette R; Comas T; Denhoff MW; Luk C; Syed NI; Mealing G
    J Vis Exp; 2012 Feb; (60):. PubMed ID: 22348948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Whole-cell Patch-clamp Recordings in Brain Slices.
    Segev A; Garcia-Oscos F; Kourrich S
    J Vis Exp; 2016 Jun; (112):. PubMed ID: 27341060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single or Double Patch-Clamp Recordings In Ex Vivo Slice Preparation: Functional Connectivity, Synapse Dynamics, and Optogenetics.
    Simonnet J; Richevaux L; Fricker D
    Methods Mol Biol; 2021; 2188():285-309. PubMed ID: 33119858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal Pipette Resistance, Seal Resistance, and Zero-Current Membrane Potential for Loose Patch or Breakthrough Whole-Cell Recording
    Yan L; Fang Q; Zhang X; Huang B
    Front Neural Circuits; 2020; 14():34. PubMed ID: 32714153
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.