BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 26085542)

  • 1. Estimating the Fitness Effects of New Mutations in the Wild Yeast Saccharomyces paradoxus.
    Koufopanou V; Lomas S; Tsai IJ; Burt A
    Genome Biol Evol; 2015 Jun; 7(7):1887-95. PubMed ID: 26085542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide survey of natural selection on functional, structural, and network properties of polymorphic sites in Saccharomyces paradoxus.
    Vishnoi A; Sethupathy P; Simola D; Plotkin JB; Hannenhalli S
    Mol Biol Evol; 2011 Sep; 28(9):2615-27. PubMed ID: 21478372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Saccharomyces paradoxus and Saccharomyces cerevisiae reside on oak trees in New Zealand: evidence for migration from Europe and interspecies hybrids.
    Zhang H; Skelton A; Gardner RC; Goddard MR
    FEMS Yeast Res; 2010 Nov; 10(7):941-7. PubMed ID: 20868381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The distribution of fitness effects of new deleterious amino acid mutations in humans.
    Eyre-Walker A; Woolfit M; Phelps T
    Genetics; 2006 Jun; 173(2):891-900. PubMed ID: 16547091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shifts in the intensity of purifying selection: an analysis of genome-wide polymorphism data from two closely related yeast species.
    Elyashiv E; Bullaughey K; Sattath S; Rinott Y; Przeworski M; Sella G
    Genome Res; 2010 Nov; 20(11):1558-73. PubMed ID: 20817943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multilocus analyses reveal little evidence for lineage-wide adaptive evolution within major clades of soft pines (Pinus subgenus Strobus).
    Eckert AJ; Bower AD; Jermstad KD; Wegrzyn JL; Knaus BJ; Syring JV; Neale DB
    Mol Ecol; 2013 Nov; 22(22):5635-50. PubMed ID: 24134614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inference of Distribution of Fitness Effects and Proportion of Adaptive Substitutions from Polymorphism Data.
    Tataru P; Mollion M; Glémin S; Bataillon T
    Genetics; 2017 Nov; 207(3):1103-1119. PubMed ID: 28951530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phylogenetic network and physicochemical properties of nonsynonymous mutations in the protein-coding genes of human mitochondrial DNA.
    Moilanen JS; Majamaa K
    Mol Biol Evol; 2003 Aug; 20(8):1195-210. PubMed ID: 12777521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fitness effects of derived deleterious mutations in four closely related wild tomato species with spatial structure.
    Tellier A; Fischer I; Merino C; Xia H; Camus-Kulandaivelu L; Städler T; Stephan W
    Heredity (Edinb); 2011 Sep; 107(3):189-99. PubMed ID: 21245893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Population Size, Sex and Purifying Selection: Comparative Genomics of Two Sister Taxa of the Wild Yeast Saccharomyces paradoxus.
    Koufopanou V; Lomas S; Pronina O; Almeida P; Sampaio JP; Mousseau T; Liti G; Burt A
    Genome Biol Evol; 2020 Sep; 12(9):1636-1645. PubMed ID: 33011797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The evolution of gene expression QTL in Saccharomyces cerevisiae.
    Ronald J; Akey JM
    PLoS One; 2007 Aug; 2(7):e678. PubMed ID: 17668057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for inefficient selection against deleterious mutations in cytochrome oxidase I of asexual bdelloid rotifers.
    Barraclough TG; Fontaneto D; Ricci C; Herniou EA
    Mol Biol Evol; 2007 Sep; 24(9):1952-62. PubMed ID: 17573376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variation in Mutational Robustness between Different Proteins and the Predictability of Fitness Effects.
    Lind PA; Arvidsson L; Berg OG; Andersson DI
    Mol Biol Evol; 2017 Feb; 34(2):408-418. PubMed ID: 28025272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recurrent loss of sex is associated with accumulation of deleterious mutations in Oenothera.
    Hollister JD; Greiner S; Wang W; Wang J; Zhang Y; Wong GK; Wright SI; Johnson MT
    Mol Biol Evol; 2015 Apr; 32(4):896-905. PubMed ID: 25534028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The inevitability of unconditionally deleterious substitutions during adaptation.
    McCandlish DM; Epstein CL; Plotkin JB
    Evolution; 2014 May; 68(5):1351-64. PubMed ID: 24410330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Position specific variation in the rate of evolution in transcription factor binding sites.
    Moses AM; Chiang DY; Kellis M; Lander ES; Eisen MB
    BMC Evol Biol; 2003 Aug; 3():19. PubMed ID: 12946282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Molecular polymorphism of IB-fructosidase SUC genes in the yeast].
    Naumova ES; Sadykova AZh; Martynenko NN; Naumov GI
    Mol Biol (Mosk); 2014; 48(4):658-68. PubMed ID: 25842849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of pleiotropy in the maintenance of sex in yeast.
    Hill JA; Otto SP
    Genetics; 2007 Mar; 175(3):1419-27. PubMed ID: 17237501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Comparative molecular-genetic analysis of the beta-fructosidases in yeast Saccharomyces].
    Korshunova IV; Naumova ES; Naumov GI
    Mol Biol (Mosk); 2005; 39(3):413-9. PubMed ID: 15981571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of a membrane protein regulon in Saccharomyces.
    Martin HC; Roop JI; Schraiber JG; Hsu TY; Brem RB
    Mol Biol Evol; 2012 Jul; 29(7):1747-56. PubMed ID: 22319167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.