BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 26085576)

  • 1. New insights into craniofacial malformations.
    Twigg SR; Wilkie AO
    Hum Mol Genet; 2015 Oct; 24(R1):R50-9. PubMed ID: 26085576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epidermal growth factor receptor function is necessary for normal craniofacial development and palate closure.
    Miettinen PJ; Chin JR; Shum L; Slavkin HC; Shuler CF; Derynck R; Werb Z
    Nat Genet; 1999 May; 22(1):69-73. PubMed ID: 10319864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathogenesis and morphogenesis of craniofacial developmental anomalies.
    Sperber GH
    Ann Acad Med Singap; 1999 Sep; 28(5):708-13. PubMed ID: 10597358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in craniofacial morphogenesis.
    Chai Y; Maxson RE
    Dev Dyn; 2006 Sep; 235(9):2353-75. PubMed ID: 16680722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of
    Lansdon LA; Darbro BW; Petrin AL; Hulstrand AM; Standley JM; Brouillette RB; Long A; Mansilla MA; Cornell RA; Murray JC; Houston DW; Manak JR
    Genetics; 2018 Jan; 208(1):283-296. PubMed ID: 29162626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Malformations of the craniofacial region: evolutionary, embryonic, genetic, and clinical perspectives.
    Cohen MM
    Am J Med Genet; 2002 Dec; 115(4):245-68. PubMed ID: 12503119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SOX3 activity during pharyngeal segmentation is required for craniofacial morphogenesis.
    Rizzoti K; Lovell-Badge R
    Development; 2007 Oct; 134(19):3437-48. PubMed ID: 17728342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zebrafish wnt9a is expressed in pharyngeal ectoderm and is required for palate and lower jaw development.
    Curtin E; Hickey G; Kamel G; Davidson AJ; Liao EC
    Mech Dev; 2011; 128(1-2):104-15. PubMed ID: 21093584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation.
    Dobreva G; Chahrour M; Dautzenberg M; Chirivella L; Kanzler B; FariƱas I; Karsenty G; Grosschedl R
    Cell; 2006 Jun; 125(5):971-86. PubMed ID: 16751105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grainyhead-like Transcription Factors in Craniofacial Development.
    Carpinelli MR; de Vries ME; Jane SM; Dworkin S
    J Dent Res; 2017 Oct; 96(11):1200-1209. PubMed ID: 28697314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early Craniofacial Defects in Zebrafish That Have Reduced Function of a Wnt-Interacting Extracellular Matrix Protein, Tinagl1.
    Neiswender H; Navarre S; Kozlowski DJ; LeMosy EK
    Cleft Palate Craniofac J; 2017 Jul; 54(4):381-390. PubMed ID: 27243669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The old and new face of craniofacial research: How animal models inform human craniofacial genetic and clinical data.
    Van Otterloo E; Williams T; Artinger KB
    Dev Biol; 2016 Jul; 415(2):171-187. PubMed ID: 26808208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perinatal lethality and multiple craniofacial malformations in MSX2 transgenic mice.
    Winograd J; Reilly MP; Roe R; Lutz J; Laughner E; Xu X; Hu L; Asakura T; vander Kolk C; Strandberg JD; Semenza GL
    Hum Mol Genet; 1997 Mar; 6(3):369-79. PubMed ID: 9147639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The canonical Wnt signaling activator, R-spondin2, regulates craniofacial patterning and morphogenesis within the branchial arch through ectodermal-mesenchymal interaction.
    Jin YR; Turcotte TJ; Crocker AL; Han XH; Yoon JK
    Dev Biol; 2011 Apr; 352(1):1-13. PubMed ID: 21237142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facial clefts and facial dysplasia: revisiting the classification.
    Mazzola RF; Mazzola IC
    J Craniofac Surg; 2014 Jan; 25(1):26-34. PubMed ID: 24406554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Common mechanisms in development and disease: BMP signaling in craniofacial development.
    Graf D; Malik Z; Hayano S; Mishina Y
    Cytokine Growth Factor Rev; 2016 Feb; 27():129-39. PubMed ID: 26747371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prenatal craniofacial development: new insights on normal and abnormal mechanisms.
    Johnston MC; Bronsky PT
    Crit Rev Oral Biol Med; 1995; 6(4):368-422. PubMed ID: 8664424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The E3 ubiquitin ligase Wwp2 regulates craniofacial development through mono-ubiquitylation of Goosecoid.
    Zou W; Chen X; Shim JH; Huang Z; Brady N; Hu D; Drapp R; Sigrist K; Glimcher LH; Jones D
    Nat Cell Biol; 2011 Jan; 13(1):59-65. PubMed ID: 21170031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A tissue-specific role for intraflagellar transport genes during craniofacial development.
    Schock EN; Struve JN; Chang CF; Williams TJ; Snedeker J; Attia AC; Stottmann RW; Brugmann SA
    PLoS One; 2017; 12(3):e0174206. PubMed ID: 28346501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frontonasal malformation, first branchial arch anomalies, congenital heart defect, and severe central nervous system involvement: a possible "new" autosomal recessive syndrome?
    Guion-Almeida ML; Richieri-Costa A
    Am J Med Genet A; 2006 Nov; 140(22):2478-81. PubMed ID: 17041938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.