These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 26085658)
1. Adaptations of protein structure and function to temperature: there is more than one way to 'skin a cat'. Fields PA; Dong Y; Meng X; Somero GN J Exp Biol; 2015 Jun; 218(Pt 12):1801-11. PubMed ID: 26085658 [TBL] [Abstract][Full Text] [Related]
2. Evolutionary convergence in adaptation of proteins to temperature: A4-lactate dehydrogenases of Pacific damselfishes (Chromis spp.). Johns GC; Somero GN Mol Biol Evol; 2004 Feb; 21(2):314-20. PubMed ID: 14660697 [TBL] [Abstract][Full Text] [Related]
3. Temperature sensitivities of cytosolic malate dehydrogenases from native and invasive species of marine mussels (genus Mytilus): sequence-function linkages and correlations with biogeographic distribution. Fields PA; Rudomin EL; Somero GN J Exp Biol; 2006 Feb; 209(Pt 4):656-67. PubMed ID: 16449560 [TBL] [Abstract][Full Text] [Related]
4. Decreases in activation energy and substrate affinity in cold-adapted A4-lactate dehydrogenase: evidence from the Antarctic notothenioid fish Chaenocephalus aceratus. Fields PA; Houseman DE Mol Biol Evol; 2004 Dec; 21(12):2246-55. PubMed ID: 15317880 [TBL] [Abstract][Full Text] [Related]
5. Hot spots in cold adaptation: localized increases in conformational flexibility in lactate dehydrogenase A4 orthologs of Antarctic notothenioid fishes. Fields PA; Somero GN Proc Natl Acad Sci U S A; 1998 Sep; 95(19):11476-81. PubMed ID: 9736762 [TBL] [Abstract][Full Text] [Related]
6. Temperature adaptation of cytosolic malate dehydrogenases of limpets (genus Lottia): differences in stability and function due to minor changes in sequence correlate with biogeographic and vertical distributions. Dong Y; Somero GN J Exp Biol; 2009 Jan; 212(Pt 2):169-77. PubMed ID: 19112135 [TBL] [Abstract][Full Text] [Related]
7. Functional determinants of temperature adaptation in enzymes of cold- versus warm-adapted mussels (Genus Mytilus). Lockwood BL; Somero GN Mol Biol Evol; 2012 Oct; 29(10):3061-70. PubMed ID: 22491035 [TBL] [Abstract][Full Text] [Related]
8. Structural flexibility and protein adaptation to temperature: Molecular dynamics analysis of malate dehydrogenases of marine molluscs. Dong YW; Liao ML; Meng XL; Somero GN Proc Natl Acad Sci U S A; 2018 Feb; 115(6):1274-1279. PubMed ID: 29358381 [TBL] [Abstract][Full Text] [Related]
9. Adaptation of enzymes to temperature: searching for basic "strategies". Somero GN Comp Biochem Physiol B Biochem Mol Biol; 2004 Nov; 139(3):321-33. PubMed ID: 15544958 [TBL] [Abstract][Full Text] [Related]
10. Activity, stability and structural studies of lactate dehydrogenases adapted to extreme thermal environments. Coquelle N; Fioravanti E; Weik M; Vellieux F; Madern D J Mol Biol; 2007 Nov; 374(2):547-62. PubMed ID: 17936781 [TBL] [Abstract][Full Text] [Related]
11. Sampling the conformational energy landscape of a hyperthermophilic protein by engineering key substitutions. Colletier JP; Aleksandrov A; Coquelle N; Mraihi S; Mendoza-Barberá E; Field M; Madern D Mol Biol Evol; 2012 Jun; 29(6):1683-94. PubMed ID: 22319152 [TBL] [Abstract][Full Text] [Related]
12. Comparing mutagenesis and simulations as tools for identifying functionally important sequence changes for protein thermal adaptation. Liao ML; Somero GN; Dong YW Proc Natl Acad Sci U S A; 2019 Jan; 116(2):679-688. PubMed ID: 30584112 [TBL] [Abstract][Full Text] [Related]
13. Intrinsic versus extrinsic stabilization of enzymes: the interaction of solutes and temperature on A4-lactate dehydrogenase orthologs from warm-adapted and cold-adapted marine fishes. Fields PA; Wahlstrand BD; Somero GN Eur J Biochem; 2001 Aug; 268(16):4497-505. PubMed ID: 11502210 [TBL] [Abstract][Full Text] [Related]
14. Design and synthesis of new enzymes based on the lactate dehydrogenase framework. Dunn CR; Wilks HM; Halsall DJ; Atkinson T; Clarke AR; Muirhead H; Holbrook JJ Philos Trans R Soc Lond B Biol Sci; 1991 May; 332(1263):177-84. PubMed ID: 1678537 [TBL] [Abstract][Full Text] [Related]
15. Function of muscle-type lactate dehydrogenase and citrate synthase of the Galápagos marine iguana, Amblyrhynchus cristatus, in relation to temperature. Fields PA; Strothers CM; Mitchell MA Comp Biochem Physiol B Biochem Mol Biol; 2008 May; 150(1):62-73. PubMed ID: 18313960 [TBL] [Abstract][Full Text] [Related]
16. Protein adaptations to temperature and pressure: complementary roles of adaptive changes in amino acid sequence and internal milieu. Somero GN Comp Biochem Physiol B Biochem Mol Biol; 2003 Dec; 136(4):577-91. PubMed ID: 14662287 [TBL] [Abstract][Full Text] [Related]
17. Structural basis for thermophilic protein stability: structures of thermophilic and mesophilic malate dehydrogenases. Dalhus B; Saarinen M; Sauer UH; Eklund P; Johansson K; Karlsson A; Ramaswamy S; Bjørk A; Synstad B; Naterstad K; Sirevåg R; Eklund H J Mol Biol; 2002 May; 318(3):707-21. PubMed ID: 12054817 [TBL] [Abstract][Full Text] [Related]
18. Malate dehydrogenase: a model for structure, evolution, and catalysis. Goward CR; Nicholls DJ Protein Sci; 1994 Oct; 3(10):1883-8. PubMed ID: 7849603 [TBL] [Abstract][Full Text] [Related]
19. Gradual adaptive changes of a protein facing high salt concentrations. Coquelle N; Talon R; Juers DH; Girard E; Kahn R; Madern D J Mol Biol; 2010 Dec; 404(3):493-505. PubMed ID: 20888835 [TBL] [Abstract][Full Text] [Related]
20. Crystal structure of the MJ0490 gene product of the hyperthermophilic archaebacterium Methanococcus jannaschii, a novel member of the lactate/malate family of dehydrogenases. Lee BI; Chang C; Cho SJ; Eom SH; Kim KK; Yu YG; Suh SW J Mol Biol; 2001 Apr; 307(5):1351-62. PubMed ID: 11292347 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]