BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 26085668)

  • 1. Transcriptomic responses to environmental temperature in eurythermal and stenothermal fishes.
    Logan CA; Buckley BA
    J Exp Biol; 2015 Jun; 218(Pt 12):1915-24. PubMed ID: 26085668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linking transcriptional responses to organismal tolerance reveals mechanisms of thermal sensitivity in a mesothermal endangered fish.
    Komoroske LM; Connon RE; Jeffries KM; Fangue NA
    Mol Ecol; 2015 Oct; 24(19):4960-81. PubMed ID: 26339983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome analysis reveals molecular mechanisms responsive to acute cold stress in the tropical stenothermal fish tiger barb (Puntius tetrazona).
    Liu L; Zhang R; Wang X; Zhu H; Tian Z
    BMC Genomics; 2020 Oct; 21(1):737. PubMed ID: 33096997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antarctic notothenioid fish: what are the future consequences of 'losses' and 'gains' acquired during long-term evolution at cold and stable temperatures?
    Beers JM; Jayasundara N
    J Exp Biol; 2015 Jun; 218(Pt 12):1834-45. PubMed ID: 26085661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature (but not acclimation) affects hearing in fishes adapted to different temperature regimes.
    Schliwa M; Ladich F
    Comp Biochem Physiol A Mol Integr Physiol; 2021 Nov; 261():111053. PubMed ID: 34375742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variation in the heat shock response and its implication for predicting the effect of global climate change on species' biogeographical distribution ranges and metabolic costs.
    Tomanek L
    J Exp Biol; 2010 Mar; 213(6):971-9. PubMed ID: 20190122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influences of thermal acclimation and acute temperature change on the motility of epithelial wound-healing cells (keratocytes) of tropical, temperate and Antarctic fish.
    Ream RA; Theriot JA; Somero GN
    J Exp Biol; 2003 Dec; 206(Pt 24):4539-51. PubMed ID: 14610038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responses of action potential and K+ currents to temperature acclimation in fish hearts: phylogeny or thermal preferences?
    Haverinen J; Vornanen M
    Physiol Biochem Zool; 2009; 82(5):468-82. PubMed ID: 19193116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical adaptations of notothenioid fishes: comparisons between cold temperate South American and New Zealand species and Antarctic species.
    Coppes Petricorena ZL; Somero GN
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Jul; 147(3):799-807. PubMed ID: 17293146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat tolerance and its plasticity in Antarctic fishes.
    Bilyk KT; Devries AL
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Apr; 158(4):382-90. PubMed ID: 21159323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and kinetic characterization of myoglobins from eurythermal and stenothermal fish species.
    Madden PW; Babcock MJ; Vayda ME; Cashon RE
    Comp Biochem Physiol B Biochem Mol Biol; 2004 Mar; 137(3):341-50. PubMed ID: 15050521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acclimation and thermal tolerance in Antarctic marine ectotherms.
    Peck LS; Morley SA; Richard J; Clark MS
    J Exp Biol; 2014 Jan; 217(Pt 1):16-22. PubMed ID: 24353200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The importance of physiological limits in determining biogeographical range shifts due to global climate change: the heat-shock response.
    Tomanek L
    Physiol Biochem Zool; 2008; 81(6):709-17. PubMed ID: 18844483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of ambient temperature and thermal acclimation on hearing in a eurythermal and a stenothermal otophysan fish.
    Wysocki LE; Montey K; Popper AN
    J Exp Biol; 2009 Oct; 212(19):3091-9. PubMed ID: 19749101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The evolution of thermal adaptation in polar fish.
    Verde C; Parisi E; di Prisco G
    Gene; 2006 Dec; 385():137-45. PubMed ID: 16757135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-dimensional gel analysis of the heat-shock response in marine snails (genus Tegula): interspecific variation in protein expression and acclimation ability.
    Tomanek L
    J Exp Biol; 2005 Aug; 208(Pt 16):3133-43. PubMed ID: 16081611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ocean cleaning stations under a changing climate: biological responses of tropical and temperate fish-cleaner shrimp to global warming.
    Rosa R; Lopes AR; Pimentel M; Faleiro F; Baptista M; Trübenbach K; Narciso L; Dionísio G; Pegado MR; Repolho T; Calado R; Diniz M
    Glob Chang Biol; 2014 Oct; 20(10):3068-79. PubMed ID: 24771544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal acclimation of tropical coral reef fishes to global heat waves.
    Johansen JL; Nadler LE; Habary A; Bowden AJ; Rummer J
    Elife; 2021 Jan; 10():. PubMed ID: 33496262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple sub-lethal thresholds for cellular responses to thermal stressors in an estuarine fish.
    Jeffries KM; Fangue NA; Connon RE
    Comp Biochem Physiol A Mol Integr Physiol; 2018 Nov; 225():33-45. PubMed ID: 29958996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stress response or beneficial temperature acclimation: transcriptomic signatures in Antarctic fish (Pachycara brachycephalum).
    Windisch HS; Frickenhaus S; John U; Knust R; Pörtner HO; Lucassen M
    Mol Ecol; 2014 Jul; 23(14):3469-82. PubMed ID: 24897925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.