BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 26085928)

  • 1. Positive Charge of "Sticky" Peptides and Proteins Impedes Release From Negatively Charged PLGA Matrices.
    Balmert SC; Zmolek AC; Glowacki AJ; Knab TD; Rothstein SN; Wokpetah JM; Fedorchak MV; Little SR
    J Mater Chem B; 2015 Jun; 3(23):4723-4734. PubMed ID: 26085928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled release of NFkappaB decoy oligonucleotides from biodegradable polymer microparticles.
    Zhu X; Lu L; Currier BL; Windebank AJ; Yaszemski MJ
    Biomaterials; 2002 Jul; 23(13):2683-92. PubMed ID: 12059017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monomer sequence in PLGA microparticles: Effects on acidic microclimates and in vivo inflammatory response.
    Washington MA; Balmert SC; Fedorchak MV; Little SR; Watkins SC; Meyer TY
    Acta Biomater; 2018 Jan; 65():259-271. PubMed ID: 29101019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of antibiotic physicochemical properties on their release kinetics from biodegradable polymer microparticles.
    Shah SR; Henslee AM; Spicer PP; Yokota S; Petrichenko S; Allahabadi S; Bennett GN; Wong ME; Kasper FK; Mikos AG
    Pharm Res; 2014 Dec; 31(12):3379-89. PubMed ID: 24874603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled release of hyaluronan oligomers from biodegradable polymeric microparticle carriers.
    Hedberg EL; Shih CK; Solchaga LA; Caplan AI; Mikos AG
    J Control Release; 2004 Nov; 100(2):257-66. PubMed ID: 15544873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TGF-beta1 release from biodegradable polymer microparticles: its effects on marrow stromal osteoblast function.
    Lu L; Yaszemski MJ; Mikos AG
    J Bone Joint Surg Am; 2001; 83-A Suppl 1(Pt 2):S82-91. PubMed ID: 11314800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elaboration of Charged Poly(Lactic-co-Glycolic Acid) Microparticles for Effective Release of Tranexamic Acid.
    Huang MH; Huang SY; Chen YX; Chen CY; Lin YS
    Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32260323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering PLGA-Lipid Hybrid Microparticles for Enhanced Macrophage Uptake.
    Maghrebi S; Jambhrunkar M; Joyce P; Prestidge CA
    ACS Appl Bio Mater; 2020 Jul; 3(7):4159-4167. PubMed ID: 35025418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of lauryl capping group on protein release and degradation of poly(D,L-lactic-co-glycolic acid) particles.
    Samadi N; Abbadessa A; Di Stefano A; van Nostrum CF; Vermonden T; Rahimian S; Teunissen EA; van Steenbergen MJ; Amidi M; Hennink WE
    J Control Release; 2013 Dec; 172(2):436-43. PubMed ID: 23751568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. rhBMP-2 release from injectable poly(DL-lactic-co-glycolic acid)/calcium-phosphate cement composites.
    Ruhe PQ; Hedberg EL; Padron NT; Spauwen PH; Jansen JA; Mikos AG
    J Bone Joint Surg Am; 2003; 85-A Suppl 3():75-81. PubMed ID: 12925613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled release of GAG-binding enhanced transduction (GET) peptides for sustained and highly efficient intracellular delivery.
    Abu-Awwad HAM; Thiagarajan L; Dixon JE
    Acta Biomater; 2017 Jul; 57():225-237. PubMed ID: 28457961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioerodable PLGA-Based Microparticles for Producing Sustained-Release Drug Formulations and Strategies for Improving Drug Loading.
    Han FY; Thurecht KJ; Whittaker AK; Smith MT
    Front Pharmacol; 2016; 7():185. PubMed ID: 27445821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PLGA-based drug delivery systems: importance of the type of drug and device geometry.
    Klose D; Siepmann F; Elkharraz K; Siepmann J
    Int J Pharm; 2008 Apr; 354(1-2):95-103. PubMed ID: 18055140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled release of rhBMP-2 loaded poly(dl-lactic-co-glycolic acid)/calcium phosphate cement composites in vivo.
    Ruhé PQ; Boerman OC; Russel FG; Spauwen PH; Mikos AG; Jansen JA
    J Control Release; 2005 Aug; 106(1-2):162-71. PubMed ID: 15972241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative study of poly (lactic-co-glycolic acid)-poly ethyleneimine-plasmid DNA microparticles prepared using double emulsion methods.
    Zhang XQ; Intra J; Salem AK
    J Microencapsul; 2008 Feb; 25(1):1-12. PubMed ID: 18188727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-functionalized, pH-responsive poly(lactic-co-glycolic acid)-based microparticles for intranasal vaccine delivery: Effect of surface modification with chitosan and mannan.
    Li Z; Xiong F; He J; Dai X; Wang G
    Eur J Pharm Biopharm; 2016 Dec; 109():24-34. PubMed ID: 27569030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and Characterization of Antibody-Loaded Cationic Porous PLGA Microparticles for Sustained Antibody Release.
    Hanaki A; Ogawa K; Tagami T; Ozeki T
    AAPS J; 2023 Sep; 25(6):92. PubMed ID: 37740072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the microencapsulation method and peptide loading on poly(lactic acid) and poly(lactic-co-glycolic acid) degradation during in vitro testing.
    Witschi C; Doelker E
    J Control Release; 1998 Feb; 51(2-3):327-41. PubMed ID: 9685930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenomenology of the Initial Burst Release of Drugs from PLGA Microparticles.
    Yoo J; Won YY
    ACS Biomater Sci Eng; 2020 Nov; 6(11):6053-6062. PubMed ID: 33449671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of pH- and time-dependent oral microparticles to optimize budesonide delivery to ileum and colon.
    Krishnamachari Y; Madan P; Lin S
    Int J Pharm; 2007 Jun; 338(1-2):238-47. PubMed ID: 17368982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.