These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
553 related articles for article (PubMed ID: 26086090)
1. Single Step Bi-reforming and Oxidative Bi-reforming of Methane (Natural Gas) with Steam and Carbon Dioxide to Metgas (CO-2H2) for Methanol Synthesis: Self-Sufficient Effective and Exclusive Oxygenation of Methane to Methanol with Oxygen. Olah GA; Goeppert A; Czaun M; Mathew T; May RB; Prakash GK J Am Chem Soc; 2015 Jul; 137(27):8720-9. PubMed ID: 26086090 [TBL] [Abstract][Full Text] [Related]
2. Bi-reforming of methane from any source with steam and carbon dioxide exclusively to metgas (CO-2H2) for methanol and hydrocarbon synthesis. Olah GA; Goeppert A; Czaun M; Prakash GK J Am Chem Soc; 2013 Jan; 135(2):648-50. PubMed ID: 23256664 [TBL] [Abstract][Full Text] [Related]
3. Self-sufficient and exclusive oxygenation of methane and its source materials with oxygen to methanol via metgas using oxidative bi-reforming. Olah GA; Prakash GK; Goeppert A; Czaun M; Mathew T J Am Chem Soc; 2013 Jul; 135(27):10030-1. PubMed ID: 23795911 [TBL] [Abstract][Full Text] [Related]
4. Dry reforming of methane to syngas: a potential alternative process for value added chemicals-a techno-economic perspective. Mondal K; Sasmal S; Badgandi S; Chowdhury DR; Nair V Environ Sci Pollut Res Int; 2016 Nov; 23(22):22267-22273. PubMed ID: 26939689 [TBL] [Abstract][Full Text] [Related]
5. Efficient utilization of greenhouse gas in a gas-to-liquids process combined with carbon dioxide reforming of methane. Ha KS; Bae JW; Woo KJ; Jun KW Environ Sci Technol; 2010 Feb; 44(4):1412-7. PubMed ID: 20078033 [TBL] [Abstract][Full Text] [Related]
6. Producing hydrogen by catalytic steam reforming of methanol using non-noble metal catalysts. Deng Y; Li S; Appels L; Dewil R; Zhang H; Baeyens J; Mikulcic H J Environ Manage; 2022 Nov; 321():116019. PubMed ID: 36029634 [TBL] [Abstract][Full Text] [Related]
7. An introduction of CO₂ conversion by dry reforming with methane and new route of low-temperature methanol synthesis. Shi L; Yang G; Tao K; Yoneyama Y; Tan Y; Tsubaki N Acc Chem Res; 2013 Aug; 46(8):1838-47. PubMed ID: 23459583 [TBL] [Abstract][Full Text] [Related]
8. Carbon Capture Utilization and Storage in Methanol Production Using a Dry Reforming-Based Chemical Looping Technology. Ugwu A; Osman M; Zaabout A; Amini S Energy Fuels; 2022 Sep; 36(17):9719-9735. PubMed ID: 36091477 [TBL] [Abstract][Full Text] [Related]
9. Surface Spectroscopy on UHV-Grown and Technological Ni-ZrO Anic K; Wolfbeisser A; Li H; Rameshan C; Föttinger K; Bernardi J; Rupprechter G Top Catal; 2016; 59(17):1614-1627. PubMed ID: 28035177 [TBL] [Abstract][Full Text] [Related]
10. Emerging trends in hydrogen and synfuel generation: a state-of-the-art review. Alhassan M; Jalil AA; Owgi AHK; Hamid MYS; Bahari MB; Van Tran T; Nabgan W; Hatta AH; Khusnun NFB; Amusa AA; Nyakuma BB Environ Sci Pollut Res Int; 2024 Jun; 31(30):42640-42671. PubMed ID: 38902444 [TBL] [Abstract][Full Text] [Related]
11. Template-Assisted Wet-Combustion Synthesis of Fibrous Nickel-Based Catalyst for Carbon Dioxide Methanation and Methane Steam Reforming. Aghayan M; Potemkin DI; Rubio-Marcos F; Uskov SI; Snytnikov PV; Hussainova I ACS Appl Mater Interfaces; 2017 Dec; 9(50):43553-43562. PubMed ID: 29155551 [TBL] [Abstract][Full Text] [Related]
12. CO Alabi WO Environ Pollut; 2018 Nov; 242(Pt B):1566-1576. PubMed ID: 30166203 [TBL] [Abstract][Full Text] [Related]
13. Preparation, Characterization, and Activity of Pd/PSS-Modified Membranes in the Low Temperature Dry Reforming of Methane with and without Addition of Extra Steam. Mateos-Pedrero C; Soria MA; Guerrero-Ruíz A; Rodríguez-Ramos I Membranes (Basel); 2021 Jul; 11(7):. PubMed ID: 34357168 [TBL] [Abstract][Full Text] [Related]
14. Preparation and characterization of Ni-based perovskite catalyst for steam CO2 reforming of methane. Yang EH; Kim SW; Ahn BS; Moon DJ J Nanosci Nanotechnol; 2013 Jun; 13(6):4334-7. PubMed ID: 23862497 [TBL] [Abstract][Full Text] [Related]
15. In situ ATR-IR spectroscopic and reaction kinetics studies of water-gas shift and methanol reforming on Pt/Al2O3 catalysts in vapor and liquid phases. He R; Davda RR; Dumesic JA J Phys Chem B; 2005 Feb; 109(7):2810-20. PubMed ID: 16851292 [TBL] [Abstract][Full Text] [Related]
16. Carbon Dioxide Reforming of Methane using an Isothermal Redox Membrane Reactor. Michalsky R; Neuhaus D; Steinfeld A Energy Technol (Weinh); 2015 Jul; 3(7):784-789. PubMed ID: 31218206 [TBL] [Abstract][Full Text] [Related]
17. Can Steam- and CO-Rich Streams Be Produced Sequentially in the Isothermal Chemical Looping Super-Dry Reforming Scheme? Wang X; Wei J; Zhang J ACS Omega; 2020 Mar; 5(10):5401-5406. PubMed ID: 32201830 [TBL] [Abstract][Full Text] [Related]
18. Facile CO Warren KJ; Hill CM; Carrillo RJ; Scheffe JR Phys Chem Chem Phys; 2020 Apr; 22(16):8545-8556. PubMed ID: 32253404 [TBL] [Abstract][Full Text] [Related]
19. Steam reforming of crude glycerol with in situ CO(2) sorption. Dou B; Rickett GL; Dupont V; Williams PT; Chen H; Ding Y; Ghadiri M Bioresour Technol; 2010 Apr; 101(7):2436-42. PubMed ID: 19945865 [TBL] [Abstract][Full Text] [Related]
20. Kinetics for Steam and CO2 Reforming of Methane Over Ni/La/Al2O3 Catalyst. Park MH; Choi BK; Park YH; Moon DJ; Park NC; Kim YC J Nanosci Nanotechnol; 2015 Jul; 15(7):5255-8. PubMed ID: 26373118 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]