BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 26086207)

  • 1. Titanium-based silicide quantum dot superlattices for thermoelectrics applications.
    Savelli G; Stein SS; Bernard-Granger G; Faucherand P; Montès L; Dilhaire S; Pernot G
    Nanotechnology; 2015 Jul; 26(27):275605. PubMed ID: 26086207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal conductivity of Si-Ge quantum dot superlattices.
    Haskins JB; Kınacı A; Cağın T
    Nanotechnology; 2011 Apr; 22(15):155701. PubMed ID: 21389580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced in-plane thermoelectric figure of merit in p-type SiGe thin films by nanograin boundaries.
    Lu J; Guo R; Dai W; Huang B
    Nanoscale; 2015 Apr; 7(16):7331-9. PubMed ID: 25824614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silicon nanowires as efficient thermoelectric materials.
    Boukai AI; Bunimovich Y; Tahir-Kheli J; Yu JK; Goddard WA; Heath JR
    Nature; 2008 Jan; 451(7175):168-71. PubMed ID: 18185583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystalline-Amorphous Silicon Nanocomposites with Reduced Thermal Conductivity for Bulk Thermoelectrics.
    Miura A; Zhou S; Nozaki T; Shiomi J
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13484-9. PubMed ID: 26046688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-organization of colloidal PbS quantum dots into highly ordered superlattices.
    Baranov AV; Ushakova EV; Golubkov VV; Litvin AP; Parfenov PS; Fedorov AV; Berwick K
    Langmuir; 2015 Jan; 31(1):506-13. PubMed ID: 25514192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum dot superlattice thermoelectric materials and devices.
    Harman TC; Taylor PJ; Walsh MP; LaForge BE
    Science; 2002 Sep; 297(5590):2229-32. PubMed ID: 12351781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silicide/Silicon Hetero-Junction Structure for Thermoelectric Applications.
    Jun D; Kim S; Choi W; Kim J; Zyung T; Jang M
    J Nanosci Nanotechnol; 2015 Oct; 15(10):7472-5. PubMed ID: 26726353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Progress in Colloidal Quantum Dot Thermoelectrics.
    Nugraha MI; Indriyati I; Primadona I; Gedda M; Timuda GE; Iskandar F; Anthopoulos TD
    Adv Mater; 2023 Sep; 35(38):e2210683. PubMed ID: 36857683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermoelectric properties of HfN/ScN metal/semiconductor superlattices: a first-principles study.
    Saha B; Sands TD; Waghmare UV
    J Phys Condens Matter; 2012 Oct; 24(41):415303. PubMed ID: 23014147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermoelectric transport properties of Si, SiGe, and silicide CMOS-compatible thin films.
    Schwinge C; Hoffmann R; Hertel J; Wislicenus M; Gerlich L; Völklein F; Gerlach G; Wagner-Reetz M
    Rev Sci Instrum; 2023 Oct; 94(10):. PubMed ID: 37791862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determinants of thermal conductivity and diffusivity in nanostructural semiconductors.
    Yang CC; Armellin J; Li S
    J Phys Chem B; 2008 Feb; 112(5):1482-6. PubMed ID: 18193865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. "Nanoparticle-in-alloy" approach to efficient thermoelectrics: silicides in SiGe.
    Mingo N; Hauser D; Kobayashi NP; Plissonnier M; Shakouri A
    Nano Lett; 2009 Feb; 9(2):711-5. PubMed ID: 19128146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal properties of amorphous/crystalline silicon superlattices.
    France-Lanord A; Merabia S; Albaret T; Lacroix D; Termentzidis K
    J Phys Condens Matter; 2014 Sep; 26(35):355801. PubMed ID: 25105883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermoelectric properties of individual single-crystalline PbTe nanowires grown by a vapor transport method.
    Lee SH; Shim W; Jang SY; Roh JW; Kim P; Park J; Lee W
    Nanotechnology; 2011 Jul; 22(29):295707. PubMed ID: 21677373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanowire-based thermoelectrics.
    Ali A; Chen Y; Vasiraju V; Vaddiraju S
    Nanotechnology; 2017 Jul; 28(28):282001. PubMed ID: 28627500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots.
    Weiss EA
    Acc Chem Res; 2013 Nov; 46(11):2607-15. PubMed ID: 23734589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The structural and optical properties of InN nanodots grown with various V/III ratios by metal-organic chemical vapor deposition.
    Fu SF; Wang SM; Lee L; Chen CY; Tsai WC; Chou WC; Lee MC; Chang WH; Chen WK
    Nanotechnology; 2009 Jul; 20(29):295702. PubMed ID: 19567947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phonon transport control by nanoarchitecture including epitaxial Ge nanodots for Si-based thermoelectric materials.
    Yamasaka S; Nakamura Y; Ueda T; Takeuchi S; Sakai A
    Sci Rep; 2015 Oct; 5():14490. PubMed ID: 26434678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pressure-sensitive liquid phase epitaxy of highly-doped n-type SiGe crystals for thermoelectric applications.
    Li HW; Chang CW
    Sci Rep; 2019 Mar; 9(1):4362. PubMed ID: 30867457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.