These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 26086331)

  • 1. Mesodermal origin of median fin mesenchyme and tail muscle in amphibian larvae.
    Taniguchi Y; Kurth T; Medeiros DM; Tazaki A; Ramm R; Epperlein HH
    Sci Rep; 2015 Jun; 5():11428. PubMed ID: 26086331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An exclusively mesodermal origin of fin mesenchyme demonstrates that zebrafish trunk neural crest does not generate ectomesenchyme.
    Lee RT; Knapik EW; Thiery JP; Carney TJ
    Development; 2013 Jul; 140(14):2923-32. PubMed ID: 23739134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cranial muscles in amphibians: development, novelties and the role of cranial neural crest cells.
    Schmidt J; Piekarski N; Olsson L
    J Anat; 2013 Jan; 222(1):134-46. PubMed ID: 22780231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The distribution of fibronectin and tenascin along migratory pathways of the neural crest in the trunk of amphibian embryos.
    Epperlein HH; Halfter W; Tucker RP
    Development; 1988 Aug; 103(4):743-56. PubMed ID: 2470571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual embryonic origin and patterning of the pharyngeal skeleton in the axolotl (Ambystoma mexicanum).
    Sefton EM; Piekarski N; Hanken J
    Evol Dev; 2015; 17(3):175-84. PubMed ID: 25963195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual embryonic origin of the hyobranchial apparatus in the Mexican axolotl (Ambystoma mexicanum).
    Davidian A; Malashichev Y
    Int J Dev Biol; 2013; 57(11-12):821-8. PubMed ID: 24623073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Respective contribution of the cephalic neural crest and mesoderm to SIX1-expressing head territories in the avian embryo.
    Fonseca BF; Couly G; Dupin E
    BMC Dev Biol; 2017 Oct; 17(1):13. PubMed ID: 29017464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell lineage in mammalian craniofacial mesenchyme.
    Yoshida T; Vivatbutsiri P; Morriss-Kay G; Saga Y; Iseki S
    Mech Dev; 2008; 125(9-10):797-808. PubMed ID: 18617001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A germline GFP transgenic axolotl and its use to track cell fate: dual origin of the fin mesenchyme during development and the fate of blood cells during regeneration.
    Sobkow L; Epperlein HH; Herklotz S; Straube WL; Tanaka EM
    Dev Biol; 2006 Feb; 290(2):386-97. PubMed ID: 16387293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural crest and mesoderm lineage-dependent gene expression in orofacial development.
    Bhattacherjee V; Mukhopadhyay P; Singh S; Johnson C; Philipose JT; Warner CP; Greene RM; Pisano MM
    Differentiation; 2007 Jun; 75(5):463-77. PubMed ID: 17286603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Embryonic origin and serial homology of gill arches and paired fins in the skate,
    Sleight VA; Gillis JA
    Elife; 2020 Nov; 9():. PubMed ID: 33198887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell movements and control of patterned tissue assembly during craniofacial development.
    Noden DM
    J Craniofac Genet Dev Biol; 1991; 11(4):192-213. PubMed ID: 1812125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The development of the larval pigment patterns in Triturus alpestris and Ambystoma mexicanum.
    Epperlein HH; Löfberg J
    Adv Anat Embryol Cell Biol; 1990; 118():1-99. PubMed ID: 2368640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reassessing the embryonic origin and potential of craniofacial ectomesenchyme.
    Fabian P; Crump JG
    Semin Cell Dev Biol; 2023 Mar; 138():45-53. PubMed ID: 35331627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural crest and the origin of ectomesenchyme: neural fold heterogeneity suggests an alternative hypothesis.
    Weston JA; Yoshida H; Robinson V; Nishikawa S; Fraser ST; Nishikawa S
    Dev Dyn; 2004 Jan; 229(1):118-30. PubMed ID: 14699583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Independent induction and formation of the dorsal and ventral fins in Xenopus laevis.
    Tucker AS; Slack JM
    Dev Dyn; 2004 Jul; 230(3):461-7. PubMed ID: 15188431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of cranial neural crest cells in visceral arch muscle positioning and morphogenesis in the Mexican axolotl, Ambystoma mexicanum.
    Ericsson R; Cerny R; Falck P; Olsson L
    Dev Dyn; 2004 Oct; 231(2):237-47. PubMed ID: 15366001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural crest origins of the neck and shoulder.
    Matsuoka T; Ahlberg PE; Kessaris N; Iannarelli P; Dennehy U; Richardson WD; McMahon AP; Koentges G
    Nature; 2005 Jul; 436(7049):347-55. PubMed ID: 16034409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell delamination in the mesencephalic neural fold and its implication for the origin of ectomesenchyme.
    Lee RT; Nagai H; Nakaya Y; Sheng G; Trainor PA; Weston JA; Thiery JP
    Development; 2013 Dec; 140(24):4890-902. PubMed ID: 24198279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights from amphioxus into the evolution of vertebrate cartilage.
    Meulemans D; Bronner-Fraser M
    PLoS One; 2007 Aug; 2(8):e787. PubMed ID: 17726517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.