These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 2608658)
1. The effects of truncating long-range forces on protein dynamics. Loncharich RJ; Brooks BR Proteins; 1989; 6(1):32-45. PubMed ID: 2608658 [TBL] [Abstract][Full Text] [Related]
2. On the truncation of long-range electrostatic interactions in DNA. Norberg J; Nilsson L Biophys J; 2000 Sep; 79(3):1537-53. PubMed ID: 10969015 [TBL] [Abstract][Full Text] [Related]
3. Cutoff size need not strongly influence molecular dynamics results for solvated polypeptides. Beck DA; Armen RS; Daggett V Biochemistry; 2005 Jan; 44(2):609-16. PubMed ID: 15641786 [TBL] [Abstract][Full Text] [Related]
4. An evaluation of implicit and explicit solvent model systems for the molecular dynamics simulation of bacteriophage T4 lysozyme. Arnold GE; Ornstein RL Proteins; 1994 Jan; 18(1):19-33. PubMed ID: 8146120 [TBL] [Abstract][Full Text] [Related]
5. Molecular dynamics studies of a DNA-binding protein: 2. An evaluation of implicit and explicit solvent models for the molecular dynamics simulation of the Escherichia coli trp repressor. Guenot J; Kollman PA Protein Sci; 1992 Sep; 1(9):1185-205. PubMed ID: 1304396 [TBL] [Abstract][Full Text] [Related]
6. Simple and accurate scheme to compute electrostatic interaction: zero-dipole summation technique for molecular system and application to bulk water. Fukuda I; Kamiya N; Yonezawa Y; Nakamura H J Chem Phys; 2012 Aug; 137(5):054314. PubMed ID: 22894355 [TBL] [Abstract][Full Text] [Related]
7. An n log n Generalized Born Approximation. Anandakrishnan R; Daga M; Onufriev AV J Chem Theory Comput; 2011 Mar; 7(3):544-59. PubMed ID: 26596289 [TBL] [Abstract][Full Text] [Related]
8. The zero-multipole summation method for estimating electrostatic interactions in molecular dynamics: analysis of the accuracy and application to liquid systems. Fukuda I; Kamiya N; Nakamura H J Chem Phys; 2014 May; 140(19):194307. PubMed ID: 24852538 [TBL] [Abstract][Full Text] [Related]
9. Electrostatic energies and forces computed without explicit interparticle interactions: a linear time complexity formulation. Petrella RJ; Karplus M J Comput Chem; 2005 Jun; 26(8):755-87. PubMed ID: 15800892 [TBL] [Abstract][Full Text] [Related]
10. Molecular dynamics simulations of a protein-protein dimer: particle-mesh Ewald electrostatic model yields far superior results to standard cutoff model. Norberto de Souza O; Ornstein RL J Biomol Struct Dyn; 1999 Jun; 16(6):1205-18. PubMed ID: 10447204 [TBL] [Abstract][Full Text] [Related]
11. Proteins Markovian 3D-QSAR with spherically-truncated average electrostatic potentials. Saíz-Urra L; González-Díaz H; Uriarte E Bioorg Med Chem; 2005 Jun; 13(11):3641-7. PubMed ID: 15862992 [TBL] [Abstract][Full Text] [Related]
12. Protein simulations using techniques suitable for very large systems: the cell multipole method for nonbond interactions and the Newton-Euler inverse mass operator method for internal coordinate dynamics. Mathiowetz AM; Jain A; Karasawa N; Goddard WA Proteins; 1994 Nov; 20(3):227-47. PubMed ID: 7892172 [TBL] [Abstract][Full Text] [Related]
13. Reaction-field electrostatics in molecular dynamics simulations: development of a conservative scheme compatible with an atomic cutoff. Kubincová A; Riniker S; Hünenberger PH Phys Chem Chem Phys; 2020 Nov; 22(45):26419-26437. PubMed ID: 33180085 [TBL] [Abstract][Full Text] [Related]
14. Cutoff size does strongly influence molecular dynamics results on solvated polypeptides. Schreiber H; Steinhauser O Biochemistry; 1992 Jun; 31(25):5856-60. PubMed ID: 1610828 [TBL] [Abstract][Full Text] [Related]
15. Study of the electrostatics treatment in molecular dynamics simulations. Garemyr R; Elofsson A Proteins; 1999 Nov; 37(3):417-28. PubMed ID: 10591101 [TBL] [Abstract][Full Text] [Related]
16. Molecular dynamics simulations of peptides and proteins with a continuum electrostatic model based on screened Coulomb potentials. Hassan SA; Mehler EL; Zhang D; Weinstein H Proteins; 2003 Apr; 51(1):109-25. PubMed ID: 12596268 [TBL] [Abstract][Full Text] [Related]
17. Liquid water simulation: a critical examination of cutoff length. Yonetani Y J Chem Phys; 2006 May; 124(20):204501. PubMed ID: 16774347 [TBL] [Abstract][Full Text] [Related]
18. Comparison of protein models minimized by the all-atom and united-atom models in the AMBER force field: correlation of RMS deviation with the crystallographic R factor and size. Kini RM; Evans HJ J Biomol Struct Dyn; 1992 Oct; 10(2):265-79. PubMed ID: 1466809 [TBL] [Abstract][Full Text] [Related]
19. Molecular dynamics simulations of small peptides: dependence on dielectric model and pH. Daggett V; Kollman PA; Kuntz ID Biopolymers; 1991 Feb; 31(3):285-304. PubMed ID: 1868159 [TBL] [Abstract][Full Text] [Related]
20. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone. Murarka RK; Liwo A; Scheraga HA J Chem Phys; 2007 Oct; 127(15):155103. PubMed ID: 17949219 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]