These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
296 related articles for article (PubMed ID: 26086809)
1. Stability of continuously produced Fe(II)/Fe(III)/As(V) co-precipitates under periodic exposure to reducing agents. Doerfelt C; Feldmann T; Daenzer R; Demopoulos GP Chemosphere; 2015 Nov; 138():239-46. PubMed ID: 26086809 [TBL] [Abstract][Full Text] [Related]
2. Stability of arsenate-bearing Fe(III)/Al(III) co-precipitates in the presence of sulfide as reducing agent under anoxic conditions. Doerfelt C; Feldmann T; Roy R; Demopoulos GP Chemosphere; 2016 May; 151():318-23. PubMed ID: 26950022 [TBL] [Abstract][Full Text] [Related]
3. Coprecipitation of arsenate with iron(III) in aqueous sulfate media: effect of time, lime as base and co-ions on arsenic retention. Jia Y; Demopoulos GP Water Res; 2008 Feb; 42(3):661-8. PubMed ID: 17825873 [TBL] [Abstract][Full Text] [Related]
4. Arsenate co-precipitation with Fe(II) oxidation products and retention or release during precipitate aging. Senn AC; Hug SJ; Kaegi R; Hering JG; Voegelin A Water Res; 2018 Mar; 131():334-345. PubMed ID: 29306667 [TBL] [Abstract][Full Text] [Related]
5. A novel two-step coprecipitation process using Fe(III) and Al(III) for the removal and immobilization of arsenate from acidic aqueous solution. Jia Y; Zhang D; Pan R; Xu L; Demopoulos GP Water Res; 2012 Feb; 46(2):500-8. PubMed ID: 22142599 [TBL] [Abstract][Full Text] [Related]
6. Long-term stability of the Fe(III)-As(V) coprecipitates: Effects of neutralization mode and the addition of Fe(II) on arsenic retention. Zhang D; Wang S; Gomez MA; Wang Y; Jia Y Chemosphere; 2019 Dec; 237():124503. PubMed ID: 31398610 [TBL] [Abstract][Full Text] [Related]
7. Effect of aqueous Fe(II) on arsenate sorption on goethite and hematite. Catalano JG; Luo Y; Otemuyiwa B Environ Sci Technol; 2011 Oct; 45(20):8826-33. PubMed ID: 21899306 [TBL] [Abstract][Full Text] [Related]
8. Effect of iron reduction by enolic hydroxyl groups on the stability of scorodite in hydrometallurgical industries and arsenic mobilization. Yuan Z; Wang S; Ma X; Wang X; Zhang G; Jia Y; Zheng W Environ Sci Pollut Res Int; 2017 Dec; 24(34):26534-26544. PubMed ID: 28948427 [TBL] [Abstract][Full Text] [Related]
9. Arsenite and ferrous iron oxidation linked to chemolithotrophic denitrification for the immobilization of arsenic in anoxic environments. Sun W; Sierra-Alvarez R; Milner L; Oremland R; Field JA Environ Sci Technol; 2009 Sep; 43(17):6585-91. PubMed ID: 19764221 [TBL] [Abstract][Full Text] [Related]
10. Comparative study of Fe(II)/sulfite, Fe(II)/PDS and Fe(II)/PMS for p-arsanilic acid treatment: Efficient organic arsenic degradation and contrasting total arsenic removal. Gao Y; Luo Y; Pan Z; Zeng Z; Fan W; Hu J; Zhang Z; Ma J; Zhou Y; Ma J Water Res; 2024 Feb; 249():120967. PubMed ID: 38070343 [TBL] [Abstract][Full Text] [Related]
11. Formation of iron (hydr)oxides during the abiotic oxidation of Fe(II) in the presence of arsenate. Song J; Jia SY; Yu B; Wu SH; Han X J Hazard Mater; 2015 Aug; 294():70-9. PubMed ID: 25855615 [TBL] [Abstract][Full Text] [Related]
12. Effectiveness of Ferric, Ferrous, and Aluminum (Hydr)Oxide Coprecipitation to Treat Water Contaminated with Arsenate. Vasques ICF; de Mello JWV; Veloso RW; Ferreira VP; Abrahão WAP J Environ Qual; 2018 Nov; 47(6):1339-1346. PubMed ID: 30512073 [TBL] [Abstract][Full Text] [Related]
13. Antimony and arsenic partitioning during Fe Karimian N; Johnston SG; Burton ED Chemosphere; 2018 Mar; 195():515-523. PubMed ID: 29277031 [TBL] [Abstract][Full Text] [Related]
14. Groundwater-native Fe(II) oxidation prior to aeration with H Roy M; van Genuchten CM; Rietveld L; van Halem D Water Res; 2022 Sep; 223():119007. PubMed ID: 36044797 [TBL] [Abstract][Full Text] [Related]
15. Arsenic(V) Incorporation in Vivianite during Microbial Reduction of Arsenic(V)-Bearing Biogenic Fe(III) (Oxyhydr)oxides. Muehe EM; Morin G; Scheer L; Pape PL; Esteve I; Daus B; Kappler A Environ Sci Technol; 2016 Mar; 50(5):2281-91. PubMed ID: 26828118 [TBL] [Abstract][Full Text] [Related]
16. Sorption of arsenite, arsenate, and thioarsenates to iron oxides and iron sulfides: a kinetic and spectroscopic investigation. Couture RM; Rose J; Kumar N; Mitchell K; Wallschläger D; Van Cappellen P Environ Sci Technol; 2013 Jun; 47(11):5652-9. PubMed ID: 23607702 [TBL] [Abstract][Full Text] [Related]
17. Antimony speciation and mobility during Fe(II)-induced transformation of humic acid-antimony(V)-iron(III) coprecipitates. Karimian N; Burton ED; Johnston SG Environ Pollut; 2019 Nov; 254(Pt B):113112. PubMed ID: 31479811 [TBL] [Abstract][Full Text] [Related]
18. Enhanced Arsenate Immobilization by Kaolinite via Heterogeneous Pathways during Ferrous Iron Oxidation. Wang X; Pu S; Ding J; Chen J; Liao P; Zhong D; Tsang DCW; Crittenden JC; Wang L Environ Sci Technol; 2024 Jul; 58(27):12123-12134. PubMed ID: 38934384 [TBL] [Abstract][Full Text] [Related]
19. The stability of Fe(III)-As(V) co-precipitate in the presence of ascorbic acid: Effect of pH and Fe/As molar ratio. Yuan Z; Zhang G; Lin J; Zeng X; Ma X; Wang X; Wang S; Jia Y Chemosphere; 2019 Mar; 218():670-679. PubMed ID: 30504042 [TBL] [Abstract][Full Text] [Related]
20. Anoxic and Oxic Oxidation of Rocks Containing Fe(II)Mg-Silicates and Fe(II)-Monosulfides as Source of Fe(III)-Minerals and Hydrogen. Geobiotropy. Bassez MP Orig Life Evol Biosph; 2017 Dec; 47(4):453-480. PubMed ID: 28361301 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]