These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
296 related articles for article (PubMed ID: 26086809)
21. Fe electron transfer and atom exchange in goethite: influence of Al-substitution and anion sorption. Latta DE; Bachman JE; Scherer MM Environ Sci Technol; 2012 Oct; 46(19):10614-23. PubMed ID: 22963051 [TBL] [Abstract][Full Text] [Related]
22. Highly efficient removal of arsenate and arsenite with potassium ferrate: role of in situ formed ferric nanoparticle. Kong Y; Ma Y; Guo M; Huang Z; Ma J; Nie Y; Ding L; Chen Z; Shen J Environ Sci Pollut Res Int; 2023 Jan; 30(4):10697-10709. PubMed ID: 36083368 [TBL] [Abstract][Full Text] [Related]
23. Impact of birnessite on arsenic and iron speciation during microbial reduction of arsenic-bearing ferrihydrite. Ehlert K; Mikutta C; Kretzschmar R Environ Sci Technol; 2014 Oct; 48(19):11320-9. PubMed ID: 25243611 [TBL] [Abstract][Full Text] [Related]
24. Photoinduced oxidation of arsenite to arsenate in the presence of goethite. Bhandari N; Reeder RJ; Strongin DR Environ Sci Technol; 2012 Aug; 46(15):8044-51. PubMed ID: 22703473 [TBL] [Abstract][Full Text] [Related]
25. UV-induced highly efficient removal of As(III) through synergistic photo-oxidation in the presence of Fe(II). Zhang M; Liu L; Li A; Zhang T; Qiu G Environ Sci Pollut Res Int; 2022 Oct; 29(47):71583-71592. PubMed ID: 35604606 [TBL] [Abstract][Full Text] [Related]
26. Redox transformation of arsenic by Fe(II)-activated goethite (alpha-FeOOH). Amstaetter K; Borch T; Larese-Casanova P; Kappler A Environ Sci Technol; 2010 Jan; 44(1):102-8. PubMed ID: 20039739 [TBL] [Abstract][Full Text] [Related]
27. Dissolution and final fate of arsenic associated with gypsum, calcite, and ferrihydrite: Influence of microbial reduction of As(V), sulfate, and Fe(III). Rios-Valenciana EE; Briones-Gallardo R; Chazaro-Ruiz LF; Lopez-Lozano NE; Sierra-Alvarez R; Celis LB Chemosphere; 2020 Jan; 239():124823. PubMed ID: 31726520 [TBL] [Abstract][Full Text] [Related]
28. The pH-dependent role of different manganese oxides in the fate of arsenic during microbial reduction of arsenate-bearing goethite. Liu X; Cai X; Yin N; Huang X; Wang P; Basheer MZ; Fan C; Chang X; Hu Z; Sun G; Cui Y Water Res; 2024 Sep; 261():121988. PubMed ID: 38986281 [TBL] [Abstract][Full Text] [Related]
29. Effects of adsorbed arsenate on the rate of transformation of 2-line ferrihydrite at pH 10. Das S; Hendry MJ; Essilfie-Dughan J Environ Sci Technol; 2011 Jul; 45(13):5557-63. PubMed ID: 21619035 [TBL] [Abstract][Full Text] [Related]
30. A simple treatment method for phenylarsenic compounds: Oxidation by ferrate (VI) and simultaneous removal of the arsenate released with in situ formed Fe(III) oxide-hydroxide. Xie X; Cheng H Environ Int; 2019 Jun; 127():730-741. PubMed ID: 31003056 [TBL] [Abstract][Full Text] [Related]
31. Arsenate-reducing bacteria-mediated arsenic speciation changes and redistribution during mineral transformations in arsenate-associated goethite. Cai X; Yin N; Wang P; Du H; Liu X; Cui Y J Hazard Mater; 2020 Nov; 398():122886. PubMed ID: 32512445 [TBL] [Abstract][Full Text] [Related]
32. Model predictions of realgar precipitation by reaction of As(III) with synthetic Mackinawite under anoxic conditions. Gallegos TJ; Han YS; Hayes KF Environ Sci Technol; 2008 Dec; 42(24):9338-43. PubMed ID: 19174913 [TBL] [Abstract][Full Text] [Related]
33. Biogeochemical transformations of arsenic in circumneutral freshwater sediments. Nicholas DR; Ramamoorthy S; Palace V; Spring S; Moore JN; Rosenzweig RF Biodegradation; 2003 Apr; 14(2):123-37. PubMed ID: 12877467 [TBL] [Abstract][Full Text] [Related]
34. Coprecipitation of arsenate with metal oxides. 2. Nature, mineralogy, and reactivity of iron(III) precipitates. Violante A; Del Gaudio S; Pigna M; Ricciardella M; Banerjee D Environ Sci Technol; 2007 Dec; 41(24):8275-80. PubMed ID: 18200851 [TBL] [Abstract][Full Text] [Related]
35. Arsenate and cadmium co-adsorption and co-precipitation on goethite. Jiang W; Lv J; Luo L; Yang K; Lin Y; Hu F; Zhang J; Zhang S J Hazard Mater; 2013 Nov; 262():55-63. PubMed ID: 24007999 [TBL] [Abstract][Full Text] [Related]
36. Antimony and Arsenic Behavior during Fe(II)-Induced Transformation of Jarosite. Karimian N; Johnston SG; Burton ED Environ Sci Technol; 2017 Apr; 51(8):4259-4268. PubMed ID: 28347133 [TBL] [Abstract][Full Text] [Related]
37. As(III) removal and speciation of Fe (Oxyhydr)oxides during simultaneous oxidation of As(III) and Fe(II). Han X; Song J; Li YL; Jia SY; Wang WH; Huang FG; Wu SH Chemosphere; 2016 Mar; 147():337-44. PubMed ID: 26774297 [TBL] [Abstract][Full Text] [Related]
38. The role of Al-goethites on arsenate mobility. Silva J; Mello JW; Gasparon M; Abrahão WA; Ciminelli VS; Jong T Water Res; 2010 Nov; 44(19):5684-92. PubMed ID: 20638700 [TBL] [Abstract][Full Text] [Related]
39. Biological attenuation of arsenic and iron in a continuous flow bioreactor treating acid mine drainage (AMD). Fernandez-Rojo L; Héry M; Le Pape P; Braungardt C; Desoeuvre A; Torres E; Tardy V; Resongles E; Laroche E; Delpoux S; Joulian C; Battaglia-Brunet F; Boisson J; Grapin G; Morin G; Casiot C Water Res; 2017 Oct; 123():594-606. PubMed ID: 28709104 [TBL] [Abstract][Full Text] [Related]
40. Arsenite removal from contaminated water by precipitation of aluminum, ferrous and ferric (hydr)oxides. Vasques ICF; de Mello JWV; Veloso RW; Ferreira VP; Abrahão WAP Environ Sci Pollut Res Int; 2018 May; 25(13):12967-12980. PubMed ID: 29478170 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]