BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 26086903)

  • 1. Morphological Versatility in the Self-Assembly of Val-Ala and Ala-Val Dipeptides.
    Erdogan H; Babur E; Yilmaz M; Candas E; Gordesel M; Dede Y; Oren EE; Demirel GB; Ozturk MK; Yavuz MS; Demirel G
    Langmuir; 2015 Jul; 31(26):7337-45. PubMed ID: 26086903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-induced self-assembly of dipeptides onto nanotextured surfaces.
    Demirel G; Buyukserin F
    Langmuir; 2011 Oct; 27(20):12533-8. PubMed ID: 21879773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Intramolecular Aromatic π-π Interactions in the Self-Assembly of Di-l-Phenylalanine Dipeptide Driven by Intermolecular Interactions: Effect of Alanine Substitution.
    Reddy SM; Shanmugam G
    Chemphyschem; 2016 Sep; 17(18):2897-907. PubMed ID: 27309737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dipeptide self-assembly into water-channels and gel biomaterial.
    Bellotto O; Pierri G; Rozhin P; Polentarutti M; Kralj S; D'Andrea P; Tedesco C; Marchesan S
    Org Biomol Chem; 2022 Aug; 20(31):6211-6218. PubMed ID: 35575102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembly of azide containing dipeptides.
    Yuran S; Razvag Y; Das P; Reches M
    J Pept Sci; 2014 Jul; 20(7):479-86. PubMed ID: 24889029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designed aromatic homo-dipeptides: formation of ordered nanostructures and potential nanotechnological applications.
    Reches M; Gazit E
    Phys Biol; 2006 Feb; 3(1):S10-9. PubMed ID: 16582461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new molecular scaffold for the formation of supramolecular peptide double helices: the crystallographic insight.
    Guha S; Drew MG; Banerjee A
    Org Lett; 2007 Mar; 9(7):1347-50. PubMed ID: 17346055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expanding the solvent chemical space for self-assembly of dipeptide nanostructures.
    Mason TO; Chirgadze DY; Levin A; Adler-Abramovich L; Gazit E; Knowles TP; Buell AK
    ACS Nano; 2014 Feb; 8(2):1243-53. PubMed ID: 24422499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micropores in crystalline dipeptides as seen from the crystal structure, He pycnometry, and 129Xe NMR spectroscopy.
    Soldatov DV; Moudrakovski IL; Grachev EV; Ripmeester JA
    J Am Chem Soc; 2006 May; 128(20):6737-44. PubMed ID: 16704277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Z-Ala-Ile-OH, a dipeptide building block suitable for the formation of orthorhombic microtubes.
    Gessmann R; Garcia-Saez I; Simatos G; Mitraki A
    Acta Crystallogr C Struct Chem; 2023 Jul; 79(Pt 7):277-282. PubMed ID: 37345638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-Assembly Propensity Dictates Lifetimes in Transient Naphthalimide-Dipeptide Nanofibers.
    Kumar M; Sementa D; Narang V; Riedo E; Ulijn RV
    Chemistry; 2020 Jul; 26(38):8372-8376. PubMed ID: 32428282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Helical pores self-assembled from homochiral dendritic dipeptides based on L-Tyr and nonpolar alpha-amino acids.
    Percec V; Dulcey AE; Peterca M; Adelman P; Samant R; Balagurusamy VS; Heiney PA
    J Am Chem Soc; 2007 May; 129(18):5992-6002. PubMed ID: 17429976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembly of Alanine-Isoleucine and Isoleucine-Isoleucine Dipeptides through Atomistic Simulations and Experiments.
    Rissanou AN; Simatos G; Siachouli P; Harmandaris V; Mitraki A
    J Phys Chem B; 2020 Aug; 124(33):7102-7114. PubMed ID: 32697595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional architectures based on self-assembly of bio-inspired dipeptides: Structure modulation and its photoelectronic applications.
    Chen C; Liu K; Li J; Yan X
    Adv Colloid Interface Sci; 2015 Nov; 225():177-93. PubMed ID: 26365127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulations of small peptides: can one derive conformational preferences from ROESY spectra?
    Peter C; Rueping M; Wörner HJ; Jaun B; Seebach D; van Gunsteren WF
    Chemistry; 2003 Dec; 9(23):5838-49. PubMed ID: 14673855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supramolecular assembly of C3 peptidic molecules into helical polymers.
    Dai Y; Zhao X; Su X; Li G; Zhang A
    Macromol Rapid Commun; 2014 Aug; 35(15):1326-31. PubMed ID: 24863871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Programming the internal structure and stability of helical pores self-assembled from dendritic dipeptides via the protective groups of the peptide.
    Percec V; Dulcey AE; Peterca M; Ilies M; Sienkowska MJ; Heiney PA
    J Am Chem Soc; 2005 Dec; 127(50):17902-9. PubMed ID: 16351122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of ferrocenoyl-dipeptides with 3-aminopyrazole derivatives: beta-sheet models? A synthetic, spectroscopic, structural, and electrochemical study.
    Saweczko P; Enright GD; Kraatz HB
    Inorg Chem; 2001 Aug; 40(17):4409-19. PubMed ID: 11487349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directing peptide conformation with centrally positioned pre-organized dipeptide segments: studies of a 12-residue helix and β-hairpin.
    Chandrappa S; Madhusudana Reddy MB; Sonti R; Basuroy K; Raghothama S; Balaram P
    Amino Acids; 2015 Feb; 47(2):291-301. PubMed ID: 25399053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Helical conformations of hexapeptides containing N-terminus diproline segments.
    ; Raghothama S; Aravinda S; Shamala N; Balaram P
    Biopolymers; 2010; 94(3):360-70. PubMed ID: 20108314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.