BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 26086990)

  • 1. Experimental and constitutive modeling approaches for a study of biomechanical properties of human coronary arteries.
    Jankowska MA; Bartkowiak-Jowsa M; Bedzinski R
    J Mech Behav Biomed Mater; 2015 Oct; 50():1-12. PubMed ID: 26086990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Combination of Constitutive Damage Model and Artificial Neural Networks to Characterize the Mechanical Properties of the Healthy and Atherosclerotic Human Coronary Arteries.
    Karimi A; Rahmati SM; Sera T; Kudo S; Navidbakhsh M
    Artif Organs; 2017 Sep; 41(9):E103-E117. PubMed ID: 28150399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A combination of histological analyses and uniaxial tensile tests to determine the material coefficients of the healthy and atherosclerotic human coronary arteries.
    Karimi A; Navidbakhsh M; Shojaei A
    Tissue Cell; 2015 Apr; 47(2):152-8. PubMed ID: 25758947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling.
    Holzapfel GA; Sommer G; Gasser CT; Regitnig P
    Am J Physiol Heart Circ Physiol; 2005 Nov; 289(5):H2048-58. PubMed ID: 16006541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age related constitutive laws and stress distribution in human main coronary arteries with reference to residual strain.
    Valenta J; Vitek K; Cihak R; Konvickova S; Sochor M; Horny L
    Biomed Mater Eng; 2002; 12(2):121-34. PubMed ID: 12122236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective enzymatic removal of elastin and collagen from human abdominal aortas: uniaxial mechanical response and constitutive modeling.
    Schriefl AJ; Schmidt T; Balzani D; Sommer G; Holzapfel GA
    Acta Biomater; 2015 Apr; 17():125-36. PubMed ID: 25623592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental study of anisotropic stress/strain relationships of the piglet great vessels and relevance to pediatric congenital heart disease.
    Jia Y; Argueta-Morales IR; Liu M; Bai Y; Divo E; Kassab AJ; DeCampli WM
    Ann Thorac Surg; 2015 Apr; 99(4):1399-407. PubMed ID: 25681872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A combination of experimental and numerical methods to investigate the role of strain rate on the mechanical properties and collagen fiber orientations of the healthy and atherosclerotic human coronary arteries.
    Karimi A; Rahmati SM; Sera T; Kudo S; Navidbakhsh M
    Bioengineered; 2017 Mar; 8(2):154-170. PubMed ID: 27588460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of the uniaxial mechanical properties of healthy and atherosclerotic human coronary arteries.
    Karimi A; Navidbakhsh M; Shojaei A; Faghihi S
    Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):2550-4. PubMed ID: 23623067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microstructure-based biomechanics of coronary arteries in health and disease.
    Chen H; Kassab GS
    J Biomech; 2016 Aug; 49(12):2548-59. PubMed ID: 27086118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of material models for arterial walls from uniaxial extension tests and histological structure.
    Holzapfel GA
    J Theor Biol; 2006 Jan; 238(2):290-302. PubMed ID: 16043190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in biomechanical properties of the coronary artery wall contribute to maintained contractile responses to endothelin-1 in atherosclerosis.
    Ooi CY; Sutcliffe MP; Davenport AP; Maguire JJ
    Life Sci; 2014 Nov; 118(2):424-9. PubMed ID: 24721512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of material parameters of the two-dimensional Holzapfel-Weizsäcker type model based on uniaxial extension data of arterial walls.
    Li L; Qian X; Yan S; Lei J; Wang X; Zhang H; Liu Z
    Comput Methods Biomech Biomed Engin; 2013 Apr; 16(4):358-67. PubMed ID: 21970726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Planar biaxial characterization of diseased human coronary and carotid arteries for computational modeling.
    Kural MH; Cai M; Tang D; Gwyther T; Zheng J; Billiar KL
    J Biomech; 2012 Mar; 45(5):790-8. PubMed ID: 22236530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Residual strain in human atherosclerotic coronary arteries and age related geometrical changes.
    Valenta J; Svoboda J; Valerianova D; Vitek K
    Biomed Mater Eng; 1999; 9(5-6):311-7. PubMed ID: 10822486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D constitutive modeling of the biaxial mechanical response of intact and layer-dissected human carotid arteries.
    Sommer G; Holzapfel GA
    J Mech Behav Biomed Mater; 2012 Jan; 5(1):116-28. PubMed ID: 22100086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental Study of Anisotropic Stress/Strain Relationships of Aortic and Pulmonary Artery Homografts and Synthetic Vascular Grafts.
    Jia Y; Qiao Y; Ricardo Argueta-Morales I; Maung A; Norfleet J; Bai Y; Divo E; Kassab AJ; DeCampli WM
    J Biomech Eng; 2017 Oct; 139(10):. PubMed ID: 28753691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiaxial mechanical response and constitutive modeling of esophageal tissues: Impact on esophageal tissue engineering.
    Sommer G; Schriefl A; Zeindlinger G; Katzensteiner A; Ainödhofer H; Saxena A; Holzapfel GA
    Acta Biomater; 2013 Dec; 9(12):9379-91. PubMed ID: 23933485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical property and modelling of venous wall.
    Li W
    Prog Biophys Mol Biol; 2018 Mar; 133():56-75. PubMed ID: 29162507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison between mechanical properties of human saphenous vein and umbilical vein.
    Hamedani BA; Navidbakhsh M; Tafti HA
    Biomed Eng Online; 2012 Aug; 11():59. PubMed ID: 22917177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.