These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 26087033)
1. Amine grafted silica supported CrAuPd alloy nanoparticles: superb heterogeneous catalysts for the room temperature dehydrogenation of formic acid. Yurderi M; Bulut A; Caner N; Celebi M; Kaya M; Zahmakiran M Chem Commun (Camb); 2015 Jul; 51(57):11417-20. PubMed ID: 26087033 [TBL] [Abstract][Full Text] [Related]
2. Anchoring IrPdAu Nanoparticles on NH Luo Y; Yang Q; Nie W; Yao Q; Zhang Z; Lu ZH ACS Appl Mater Interfaces; 2020 Feb; 12(7):8082-8090. PubMed ID: 31986879 [TBL] [Abstract][Full Text] [Related]
3. Mesoporous Silica Supported Pd-MnO Jin MH; Oh D; Park JH; Lee CB; Lee SW; Park JS; Lee KY; Lee DW Sci Rep; 2016 Sep; 6():33502. PubMed ID: 27666280 [TBL] [Abstract][Full Text] [Related]
4. Amine/Hydrido Bifunctional Nanoporous Silica with Small Metal Nanoparticles Made Onsite: Efficient Dehydrogenation Catalyst. Zhu Y; Nakanishi T; Kanamori K; Nakanishi K; Ichii S; Iwaida K; Masui Y; Kamei T; Shimada T; Kumamoto A; Ikuhara YH; Jeon M; Hasegawa G; Tafu M; Yoon CW; Asefa T ACS Appl Mater Interfaces; 2017 Jan; 9(1):36-41. PubMed ID: 27992169 [TBL] [Abstract][Full Text] [Related]
5. Efficient hydrogen production from formic acid dehydrogenation over ultrasmall PdIr nanoparticles on amine-functionalized yolk-shell mesoporous silica. Chai H; Hu J; Zhang R; Feng Y; Li H; Liu Z; Zhou C; Wang X J Colloid Interface Sci; 2025 Jan; 678(Pt C):261-271. PubMed ID: 39298977 [TBL] [Abstract][Full Text] [Related]
6. Synergic Catalysis of PdCu Alloy Nanoparticles within a Macroreticular Basic Resin for Hydrogen Production from Formic Acid. Mori K; Tanaka H; Dojo M; Yoshizawa K; Yamashita H Chemistry; 2015 Aug; 21(34):12085-92. PubMed ID: 26178687 [TBL] [Abstract][Full Text] [Related]
7. Ultrafine PdAu nanoparticles immobilized on amine functionalized carbon black toward fast dehydrogenation of formic acid at room temperature. Wu L; Ni B; Chen R; Shi C; Sun P; Chen T Nanoscale Adv; 2019 Nov; 1(11):4415-4421. PubMed ID: 36134405 [TBL] [Abstract][Full Text] [Related]
8. Immobilization of palladium silver nanoparticles on NH Han J; Zhang Z; Hao Z; Li G; Liu T J Colloid Interface Sci; 2021 Apr; 587():736-742. PubMed ID: 33223240 [TBL] [Abstract][Full Text] [Related]
9. A Simple and Effective Principle for a Rational Design of Heterogeneous Catalysts for Dehydrogenation of Formic Acid. Li SJ; Zhou YT; Kang X; Liu DX; Gu L; Zhang QH; Yan JM; Jiang Q Adv Mater; 2019 Apr; 31(15):e1806781. PubMed ID: 30803061 [TBL] [Abstract][Full Text] [Related]
11. Amine-Functionalized Natural Halloysite Nanotubes Supported Metallic (Pd, Au, Ag) Nanoparticles and Their Catalytic Performance for Dehydrogenation of Formic Acid. Song L; Tan K; Ye Y; Zhu B; Zhang S; Huang W Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889634 [TBL] [Abstract][Full Text] [Related]
12. Anchoring and Upgrading Ultrafine NiPd on Room-Temperature-Synthesized Bifunctional NH Yan JM; Li SJ; Yi SS; Wulan BR; Zheng WT; Jiang Q Adv Mater; 2018 Mar; 30(12):e1703038. PubMed ID: 29411459 [TBL] [Abstract][Full Text] [Related]
13. Efficient subnanometric gold-catalyzed hydrogen generation via formic acid decomposition under ambient conditions. Bi QY; Du XL; Liu YM; Cao Y; He HY; Fan KN J Am Chem Soc; 2012 May; 134(21):8926-33. PubMed ID: 22568664 [TBL] [Abstract][Full Text] [Related]
14. Amine-functionalized Schiff base covalent organic frameworks supported PdAuIr nanoparticles as high-performance catalysts for formic acid dehydrogenation and hexavalent chromium reduction. Guo X; Di X; Tang T; Shi Y; Liu D; Wang W; Liu Z; Ji X; Shao X J Colloid Interface Sci; 2024 Mar; 658():362-372. PubMed ID: 38113545 [TBL] [Abstract][Full Text] [Related]
15. Facile synthesis of AuPd nanoparticles anchored on TiO Jiang Y; Chen M; Yang Y; Zhang X; Xiao X; Fan X; Wang C; Chen L Nanotechnology; 2018 Aug; 29(33):335402. PubMed ID: 29794333 [TBL] [Abstract][Full Text] [Related]
16. Decomposition of formic acid using tungsten(VI) oxide supported AgPd nanoparticles. Akbayrak S J Colloid Interface Sci; 2019 Mar; 538():682-688. PubMed ID: 30591196 [TBL] [Abstract][Full Text] [Related]
17. Formic Acid Dehydrogenation over Ru- and Pd-Based Catalysts: Gas- vs. Liquid-Phase Reactions. Ruiz-López E; Ribota Peláez M; Blasco Ruz M; Domínguez Leal MI; Martínez Tejada M; Ivanova S; Centeno MÁ Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676208 [TBL] [Abstract][Full Text] [Related]
18. Size-controllable APTS stabilized ruthenium(0) nanoparticles catalyst for the dehydrogenation of dimethylamine-borane at room temperature. Zahmakıran M; Philippot K; Özkar S; Chaudret B Dalton Trans; 2012 Jan; 41(2):590-8. PubMed ID: 22052298 [TBL] [Abstract][Full Text] [Related]
19. Highly Efficient Base-Free Dehydrogenation of Formic Acid at Low Temperature. Prichatz C; Trincado M; Tan L; Casas F; Kammer A; Junge H; Beller M; Grützmacher H ChemSusChem; 2018 Sep; 11(18):3092-3095. PubMed ID: 30062851 [TBL] [Abstract][Full Text] [Related]
20. Composition effects of FePt alloy nanoparticles on the electro-oxidation of formic acid. Chen W; Kim J; Sun S; Chen S Langmuir; 2007 Oct; 23(22):11303-10. PubMed ID: 17892313 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]