BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 26087061)

  • 1. Analysis of the complex formation, interaction and electron transfer pathway between the "open" conformation of NADPH-cytochrome P450 reductase and aromatase.
    Dai Y; Zhen J; Zhang X; Zhong Y; Liu S; Sun Z; Guo Y; Wu Q
    Steroids; 2015 Sep; 101():116-24. PubMed ID: 26087061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics simulations give insight into the conformational change, complex formation, and electron transfer pathway for cytochrome P450 reductase.
    Sündermann A; Oostenbrink C
    Protein Sci; 2013 Sep; 22(9):1183-95. PubMed ID: 23832577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence-function correlation of aromatase and its interaction with reductase.
    Hong Y; Li H; Yuan YC; Chen S
    J Steroid Biochem Mol Biol; 2010 Feb; 118(4-5):203-6. PubMed ID: 19944754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effector role of cytochrome P450 reductase for androstenedione binding to human aromatase.
    Zhang C; Catucci G; Di Nardo G; Gilardi G
    Int J Biol Macromol; 2020 Dec; 164():510-517. PubMed ID: 32698066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational changes of the NADPH-dependent cytochrome P450 reductase in the course of electron transfer to cytochromes P450.
    Laursen T; Jensen K; Møller BL
    Biochim Biophys Acta; 2011 Jan; 1814(1):132-8. PubMed ID: 20624491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of human CYP19A1 activity by mutant NADPH P450 oxidoreductase.
    Pandey AV; Kempná P; Hofer G; Mullis PE; Flück CE
    Mol Endocrinol; 2007 Oct; 21(10):2579-95. PubMed ID: 17595315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proximal FAD histidine residue influences interflavin electron transfer in cytochrome P450 reductase and methionine synthase reductase.
    Meints CE; Parke SM; Wolthers KR
    Arch Biochem Biophys; 2014 Apr; 547():18-26. PubMed ID: 24589657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of aromatase (CYP19) metabolite ratios to characterize electron transfer from NADPH-cytochrome P450 reductase.
    Grogan J; Shou M; Zhou D; Chen S; Korzekwa KR
    Biochemistry; 1993 Nov; 32(45):12007-12. PubMed ID: 8218277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of LYS271 and LYS279 residues in the interaction of cytochrome P4501A1 with NADPH-cytochrome P450 reductase.
    Cvrk T; Strobel HW
    Arch Biochem Biophys; 2001 Jan; 385(2):290-300. PubMed ID: 11368010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organization of cytochrome P450 enzymes involved in sex steroid synthesis: PROTEIN-PROTEIN INTERACTIONS IN LIPID MEMBRANES.
    Praporski S; Ng SM; Nguyen AD; Corbin CJ; Mechler A; Zheng J; Conley AJ; Martin LL
    J Biol Chem; 2009 Nov; 284(48):33224-32. PubMed ID: 19805543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. All-Atom Simulations Disclose How Cytochrome Reductase Reshapes the Substrate Access/Egress Routes of Its Partner CYP450s.
    Ritacco I; Saltalamacchia A; Spinello A; Ippoliti E; Magistrato A
    J Phys Chem Lett; 2020 Feb; 11(4):1189-1193. PubMed ID: 31986051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the rate limiting step for electron transfer from NADPH:cytochrome P450 reductase to cytochrome b5: a laser flash-photolysis study.
    Bhattacharyya AK; Hurley JK; Tollin G; Waskell L
    Arch Biochem Biophys; 1994 May; 310(2):318-24. PubMed ID: 8179314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A second FMN binding site in yeast NADPH-cytochrome P450 reductase suggests a mechanism of electron transfer by diflavin reductases.
    Lamb DC; Kim Y; Yermalitskaya LV; Yermalitsky VN; Lepesheva GI; Kelly SL; Waterman MR; Podust LM
    Structure; 2006 Jan; 14(1):51-61. PubMed ID: 16407065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and function of NADPH-cytochrome P450 reductase and nitric oxide synthase reductase domain.
    Iyanagi T
    Biochem Biophys Res Commun; 2005 Dec; 338(1):520-8. PubMed ID: 16125667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The interaction of NADPH-P450 reductase with P450: an electrochemical study of the role of the flavin mononucleotide-binding domain.
    Estabrook RW; Shet MS; Fisher CW; Jenkins CM; Waterman MR
    Arch Biochem Biophys; 1996 Sep; 333(1):308-15. PubMed ID: 8806785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of a NADPH-cytochrome P450 oxidoreductase (CYPOR) and heme oxygenase 1 fusion protein implies a conformational change in CYPOR upon NADPH/NADP
    Sugishima M; Sato H; Wada K; Yamamoto K
    FEBS Lett; 2019 Apr; 593(8):868-875. PubMed ID: 30883732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis for the electron transfer from an open form of NADPH-cytochrome P450 oxidoreductase to heme oxygenase.
    Sugishima M; Sato H; Higashimoto Y; Harada J; Wada K; Fukuyama K; Noguchi M
    Proc Natl Acad Sci U S A; 2014 Feb; 111(7):2524-9. PubMed ID: 24550278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [NADPH-cytochrome P450 reductase, not only the partner of cytochrome P450].
    Wiśniewska A; Jagiełło K; Mazerska Z
    Postepy Biochem; 2009; 55(3):272-8. PubMed ID: 19928583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure, electronic properties and catalytic behaviour of an activity-enhancing CYP102A1 (P450(BM3)) variant.
    Whitehouse CJ; Yang W; Yorke JA; Tufton HG; Ogilvie LC; Bell SG; Zhou W; Bartlam M; Rao Z; Wong LL
    Dalton Trans; 2011 Oct; 40(40):10383-96. PubMed ID: 21603690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.