BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 26087480)

  • 1. Automatic Fascicle Length Estimation on Muscle Ultrasound Images With an Orientation-Sensitive Segmentation.
    Zhou GQ; Zheng YP
    IEEE Trans Biomed Eng; 2015 Dec; 62(12):2828-36. PubMed ID: 26087480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic measurement of pennation angle and fascicle length of gastrocnemius muscles using real-time ultrasound imaging.
    Zhou GQ; Chan P; Zheng YP
    Ultrasonics; 2015 Mar; 57():72-83. PubMed ID: 25465963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic Myotendinous Junction Tracking in Ultrasound Images with Phase-Based Segmentation.
    Zhou GQ; Zhang Y; Wang RL; Zhou P; Zheng YP; Tarassova O; Arndt A; Chen Q
    Biomed Res Int; 2018; 2018():3697835. PubMed ID: 29750152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reliability and accuracy of an automated tracking algorithm to measure controlled passive and active muscle fascicle length changes from ultrasound.
    Gillett JG; Barrett RS; Lichtwark GA
    Comput Methods Biomech Biomed Engin; 2013; 16(6):678-87. PubMed ID: 22235878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic tracking of medial gastrocnemius fascicle length during human locomotion.
    Cronin NJ; Carty CP; Barrett RS; Lichtwark G
    J Appl Physiol (1985); 2011 Nov; 111(5):1491-6. PubMed ID: 21836045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Automatic extraction of the pennation angle of the gastrocnemius muscles from ultrasound radiofrequency signals].
    Pan Q; Chen Z; Wang Q; Huang Q; Chen W; Feng Q
    Nan Fang Yi Ke Da Xue Xue Bao; 2015 Aug; 35(8):1116-21. PubMed ID: 26277506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of a Lucas-Kanade-Based Template Tracking Algorithm to Examine In Vivo Tendon Excursion during Voluntary Contraction Using Ultrasonography.
    Karamanidis K; Travlou A; Krauss P; Jaekel U
    Ultrasound Med Biol; 2016 Jul; 42(7):1689-700. PubMed ID: 27117630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated tracking of muscle fascicle orientation in B-mode ultrasound images.
    Rana M; Hamarneh G; Wakeling JM
    J Biomech; 2009 Sep; 42(13):2068-73. PubMed ID: 19646699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An automatic fascicle tracking algorithm quantifying gastrocnemius architecture during maximal effort contractions.
    Drazan JF; Hullfish TJ; Baxter JR
    PeerJ; 2019; 7():e7120. PubMed ID: 31304054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. UltraTrack: Software for semi-automated tracking of muscle fascicles in sequences of B-mode ultrasound images.
    Farris DJ; Lichtwark GA
    Comput Methods Programs Biomed; 2016 May; 128():111-8. PubMed ID: 27040836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic measurement of pennation angle of gastrocnemius muscles during contractions based on ultrasound imaging.
    Zhou Y; Li JZ; Zhou G; Zheng YP
    Biomed Eng Online; 2012 Sep; 11():63. PubMed ID: 22943184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasound imaging to assess skeletal muscle architecture during movements: a systematic review of methods, reliability, and challenges.
    Van Hooren B; Teratsias P; Hodson-Tole EF
    J Appl Physiol (1985); 2020 Apr; 128(4):978-999. PubMed ID: 32163334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of optical flow to estimate continuous changes in muscle thickness from ultrasound image sequences.
    Li Q; Ni D; Yi W; Chen S; Wang T; Chen X
    Ultrasound Med Biol; 2013 Nov; 39(11):2194-201. PubMed ID: 23969163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning to extract muscle fascicle length changes from dynamic ultrasound images in real-time.
    Rosa LG; Zia JS; Inan OT; Sawicki GS
    PLoS One; 2021; 16(5):e0246611. PubMed ID: 34038426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Obtaining Quality Extended Field-of-View Ultrasound Images of Skeletal Muscle to Measure Muscle Fascicle Length.
    Adkins AN; Murray WM
    J Vis Exp; 2020 Dec; (166):. PubMed ID: 33369599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated regional analysis of B-mode ultrasound images of skeletal muscle movement.
    Darby J; Hodson-Tole EF; Costen N; Loram ID
    J Appl Physiol (1985); 2012 Jan; 112(2):313-27. PubMed ID: 22033532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-Destructive Determination of Muscle Architectural Variables Through the Use of DiceCT.
    Dickinson E; Stark H; Kupczik K
    Anat Rec (Hoboken); 2018 Feb; 301(2):363-377. PubMed ID: 29330959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D fascicle orientations in triceps surae.
    Rana M; Hamarneh G; Wakeling JM
    J Appl Physiol (1985); 2013 Jul; 115(1):116-25. PubMed ID: 23640593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic tracking of muscle fascicles in ultrasound images using localized Radon transform.
    Zhao H; Zhang LQ
    IEEE Trans Biomed Eng; 2011 Jul; 58(7):2094-101. PubMed ID: 21518657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transverse Muscle Ultrasound Analysis (TRAMA): Robust and Accurate Segmentation of Muscle Cross-Sectional Area.
    Salvi M; Caresio C; Meiburger KM; De Santi B; Molinari F; Minetto MA
    Ultrasound Med Biol; 2019 Mar; 45(3):672-683. PubMed ID: 30638696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.