BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 26087485)

  • 21. Imaging vibrating vocal folds with a high speed 1050 nm swept source OCT and ODT.
    Liu G; Rubinstein M; Saidi A; Qi W; Foulad A; Wong B; Chen Z
    Opt Express; 2011 Jun; 19(12):11880-9. PubMed ID: 21716421
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New laryngoscope for quantitative high-speed imaging of human vocal folds vibration in the horizontal and vertical direction.
    George NA; de Mul FF; Qiu Q; Rakhorst G; Schutte HK
    J Biomed Opt; 2008; 13(6):064024. PubMed ID: 19123670
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantifying spatiotemporal properties of vocal fold dynamics based on a multiscale analysis of phonovibrograms.
    Unger J; Hecker DJ; Kunduk M; Schuster M; Schick B; Lohscheller J
    IEEE Trans Biomed Eng; 2014 Sep; 61(9):2422-33. PubMed ID: 24771562
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Clinical relevance of endoscopic three-dimensional imaging for quantitative assessment of phonation.
    Semmler M; Döllinger M; Patel RR; Ziethe A; Schützenberger A
    Laryngoscope; 2018 Oct; 128(10):2367-2374. PubMed ID: 29536548
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Laser projection in high-speed glottography for high-precision measurements of laryngeal dimensions and dynamics.
    Schuster M; Lohscheller J; Kummer P; Eysholdt U; Hoppe U
    Eur Arch Otorhinolaryngol; 2005 Jun; 262(6):477-81. PubMed ID: 15942801
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Effects of the Menstrual Cycle on Vibratory Characteristics of the Vocal Folds Investigated With High-Speed Digital Imaging.
    Kunduk M; Vansant MB; Ikuma T; McWhorter A
    J Voice; 2017 Mar; 31(2):182-187. PubMed ID: 27614383
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spatio-temporal quantification of vocal fold vibrations using high-speed videoendoscopy and a biomechanical model.
    Schwarz R; Döllinger M; Wurzbacher T; Eysholdt U; Lohscheller J
    J Acoust Soc Am; 2008 May; 123(5):2717-32. PubMed ID: 18529190
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vocal fold vibrations: high-speed imaging, kymography, and acoustic analysis: a preliminary report.
    Larsson H; Hertegård S; Lindestad PA; Hammarberg B
    Laryngoscope; 2000 Dec; 110(12):2117-22. PubMed ID: 11129033
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spectral analysis of digital kymography in normal adult vocal fold vibration.
    Chen W; Woo P; Murry T
    J Voice; 2014 May; 28(3):356-61. PubMed ID: 24412039
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preprocessing techniques for high-speed videoendoscopy analysis.
    Ikuma T; Kunduk M; McWhorter AJ
    J Voice; 2013 Jul; 27(4):500-5. PubMed ID: 23490125
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Resonance tube phonation in water: High-speed imaging, electroglottographic and oral pressure observations of vocal fold vibrations--a pilot study.
    Granqvist S; Simberg S; Hertegård S; Holmqvist S; Larsson H; Lindestad PÅ; Södersten M; Hammarberg B
    Logoped Phoniatr Vocol; 2015 Oct; 40(3):113-21. PubMed ID: 24865620
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hemi-laryngeal Setup for Studying Vocal Fold Vibration in Three Dimensions.
    Herbst CT; Hampala V; Garcia M; Hofer R; Svec JG
    J Vis Exp; 2017 Nov; (129):. PubMed ID: 29286438
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computation of physiological human vocal fold parameters by mathematical optimization of a biomechanical model.
    Yang A; Stingl M; Berry DA; Lohscheller J; Voigt D; Eysholdt U; Dollinger M
    J Acoust Soc Am; 2011 Aug; 130(2):948-64. PubMed ID: 21877808
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A quantitative study of the medial surface dynamics of an in vivo canine vocal fold during phonation.
    Doellinger M; Berry DA; Berke GS
    Laryngoscope; 2005 Sep; 115(9):1646-54. PubMed ID: 16148711
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computation of the three-dimensional medial surface dynamics of the vocal folds.
    Döllinger M; Berry DA
    J Biomech; 2006; 39(2):369-74. PubMed ID: 16321641
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantifying syringeal dynamics
    Rasmussen JH; Herbst CT; Elemans CPH
    J Exp Biol; 2018 Aug; 221(Pt 16):. PubMed ID: 29880637
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tracing vocal fold vibrations using level set segmentation method.
    Shi T; Kim HJ; Murry T; Woo P; Yan Y
    Int J Numer Method Biomed Eng; 2015 Jun; 31(6):. PubMed ID: 25773889
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phonovibrography: mapping high-speed movies of vocal fold vibrations into 2-D diagrams for visualizing and analyzing the underlying laryngeal dynamics.
    Lohscheller J; Eysholdt U; Toy H; Dollinger M
    IEEE Trans Med Imaging; 2008 Mar; 27(3):300-9. PubMed ID: 18334426
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A new generation videokymography for routine clinical vocal fold examination.
    Qiu Q; Schutte HK
    Laryngoscope; 2006 Oct; 116(10):1824-8. PubMed ID: 17003719
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vocal fold dimensions in professional opera singers as measured by means of laser triangulation.
    Larsson H; Hertegård S
    J Voice; 2008 Nov; 22(6):734-9. PubMed ID: 17509820
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.