These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 26087495)

  • 1. Design and Fabrication of a Six Degree-of-Freedom Open Source Hand.
    Krausz NE; Rorrer RA; Weir RF
    IEEE Trans Neural Syst Rehabil Eng; 2016 May; 24(5):562-72. PubMed ID: 26087495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Creative mechanism design for a prosthetic hand.
    Chang WT; Tseng CH; Wu LL
    Proc Inst Mech Eng H; 2004; 218(6):451-9. PubMed ID: 15648669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface EMG in advanced hand prosthetics.
    Castellini C; van der Smagt P
    Biol Cybern; 2009 Jan; 100(1):35-47. PubMed ID: 19015872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A light weight compliant hand mechanism with high degrees of freedom.
    Potratz J; Yang J; Abdel-Malek K; Peña Pitarch E; Grosland N
    J Biomech Eng; 2005 Nov; 127(6):934-45. PubMed ID: 16438230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A virtual reality environment for designing and fitting neural prosthetic limbs.
    Hauschild M; Davoodi R; Loeb GE
    IEEE Trans Neural Syst Rehabil Eng; 2007 Mar; 15(1):9-15. PubMed ID: 17436870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electromyogram synergy control of a dexterous artificial hand to unscrew and screw objects.
    Kent BA; Karnati N; Engeberg ED
    J Neuroeng Rehabil; 2014 Mar; 11():41. PubMed ID: 24655413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A synergy-driven approach to a myoelectric hand.
    Godfrey SB; Ajoudani A; Catalano M; Grioli G; Bicchi A
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650377. PubMed ID: 24187196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design, control, and sensory feedback of externally powered hand prostheses: a literature review.
    Cloutier A; Yang J
    Crit Rev Biomed Eng; 2013; 41(2):161-81. PubMed ID: 24580569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of issues in the development of surface EMG controlled human hand.
    Ryait HS; Arora AS; Agarwal R
    J Mater Sci Mater Med; 2009 Dec; 20 Suppl 1():S107-14. PubMed ID: 18575977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of body-powered upper limb prostheses by able-bodied subjects, using the Box and Blocks Test and the Nine-Hole Peg Test.
    Haverkate L; Smit G; Plettenburg DH
    Prosthet Orthot Int; 2016 Feb; 40(1):109-16. PubMed ID: 25336050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis.
    Markovic M; Dosen S; Popovic D; Graimann B; Farina D
    J Neural Eng; 2015 Dec; 12(6):066022. PubMed ID: 26529274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of transradial body-powered prostheses using a robotic simulator.
    Ayub R; Villarreal D; Gregg RD; Gao F
    Prosthet Orthot Int; 2017 Apr; 41(2):194-200. PubMed ID: 27469105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of robot hand with pneumatic actuator and construct of master-slave system.
    Nishino S; Tsujiuchi N; Koizumi T; Komatsubara H; Kudawara T; Shimizu M
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3027-30. PubMed ID: 18002632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extrinsic finger and thumb muscles command a virtual hand to allow individual finger and grasp control.
    Birdwell JA; Hargrove LJ; Weir RF; Kuiken TA
    IEEE Trans Biomed Eng; 2015 Jan; 62(1):218-26. PubMed ID: 25099395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EMG-driven shared human-robot compliant control for in-hand object manipulation in hand prostheses.
    Khadivar F; Mendez V; Correia C; Batzianoulis I; Billard A; Micera S
    J Neural Eng; 2022 Dec; 19(6):. PubMed ID: 36384035
    [No Abstract]   [Full Text] [Related]  

  • 16. Repeatability of grasp recognition for robotic hand prosthesis control based on sEMG data.
    Palermo F; Cognolato M; Gijsberts A; Muller H; Caputo B; Atzori M
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1154-1159. PubMed ID: 28813977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring augmented grasping capabilities in a multi-synergistic soft bionic hand.
    Piazza C; Simon AM; Turner KL; Miller LA; Catalano MG; Bicchi A; Hargrove LJ
    J Neuroeng Rehabil; 2020 Aug; 17(1):116. PubMed ID: 32843058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advancements in prosthetic hand technology.
    Saikia A; Mazumdar S; Sahai N; Paul S; Bhatia D; Verma S; Rohilla PK
    J Med Eng Technol; 2016 Jul; 40(5):255-64. PubMed ID: 27098838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time myoelectric control of a multi-fingered hand prosthesis using principal components analysis.
    Matrone GC; Cipriani C; Carrozza MC; Magenes G
    J Neuroeng Rehabil; 2012 Jun; 9():40. PubMed ID: 22703711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Control Architecture for Grasp Strength Regulation in Myocontrolled Robotic Hands Using Vibrotactile Feedback: Preliminary Results.
    Meattini R; Biagiotti L; Palli G; De Gregorio D; Melchiorri C
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1272-1277. PubMed ID: 31374804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.