These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 26087645)

  • 1. Recovery of valuable metals from cathodic active material of spent lithium ion batteries: Leaching and kinetic aspects.
    Meshram P; Pandey BD; Mankhand TR
    Waste Manag; 2015 Nov; 45():306-13. PubMed ID: 26087645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spent lithium-ion battery recycling - Reductive ammonia leaching of metals from cathode scrap by sodium sulphite.
    Zheng X; Gao W; Zhang X; He M; Lin X; Cao H; Zhang Y; Sun Z
    Waste Manag; 2017 Feb; 60():680-688. PubMed ID: 27993441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel electrochemical process for recycling of valuable metals from spent lithium-ion batteries.
    Pei S; Yan S; Chen X; Li J; Xu J
    Waste Manag; 2024 Nov; 188():1-10. PubMed ID: 39084179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Process optimization and kinetics for leaching of rare earth metals from the spent Ni-metal hydride batteries.
    Meshram P; Pandey BD; Mankhand TR
    Waste Manag; 2016 May; 51():196-203. PubMed ID: 26746588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leaching process for recovering valuable metals from the LiNi
    He LP; Sun SY; Song XF; Yu JG
    Waste Manag; 2017 Jun; 64():171-181. PubMed ID: 28325707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A greener method to recover critical metals from spent lithium-ion batteries (LIBs): Synergistic leaching without reducing agents.
    Roshanfar M; Sartaj M; Kazemeini S
    J Environ Manage; 2024 Aug; 366():121862. PubMed ID: 39018847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recycling of valuable metals from spent lithium-ion batteries by self-supplied reductant roasting.
    Wei N; He Y; Zhang G; Feng Y; Li J; Lu Q; Fu Y
    J Environ Manage; 2023 Mar; 329():117107. PubMed ID: 36566732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subcritical Water Extraction of Valuable Metals from Spent Lithium-Ion Batteries.
    Lie J; Tanda S; Liu JC
    Molecules; 2020 May; 25(9):. PubMed ID: 32384592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries.
    Chen X; Chen Y; Zhou T; Liu D; Hu H; Fan S
    Waste Manag; 2015 Apr; 38():349-56. PubMed ID: 25619126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced reducing capacity of citric acid for lithium-ion battery recycling under microwave-assisted leaching.
    Li S; Zhang W; Xia Y; Li Q
    Waste Manag; 2024 Dec; 189():23-33. PubMed ID: 39146601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Countercurrent leaching of Ni, Co, Mn, and Li from spent lithium-ion batteries.
    Jian Y; Yanqing L; Fangyang L; Ming J; Liangxing J
    Waste Manag Res; 2020 Dec; 38(12):1358-1366. PubMed ID: 32720588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ammoniacal leaching process for the selective recovery of value metals from waste lithium-ion batteries.
    Liu X; Huang K; Xiong H; Dong H
    Environ Technol; 2023 Jan; 44(2):211-225. PubMed ID: 34383608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved recovery of valuable metals from spent lithium-ion batteries by efficient reduction roasting and facile acid leaching.
    Zhang Y; Wang W; Fang Q; Xu S
    Waste Manag; 2020 Feb; 102():847-855. PubMed ID: 31835062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organic reductants based leaching: A sustainable process for the recovery of valuable metals from spent lithium ion batteries.
    Chen X; Guo C; Ma H; Li J; Zhou T; Cao L; Kang D
    Waste Manag; 2018 May; 75():459-468. PubMed ID: 29366798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucose oxidase-based biocatalytic acid-leaching process for recovering valuable metals from spent lithium-ion batteries.
    Fan E; Shi P; Zhang X; Lin J; Wu F; Li L; Chen R
    Waste Manag; 2020 Aug; 114():166-173. PubMed ID: 32679474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-efficiency selective leaching of valuable metals from spent lithium-ion batteries: Effects of Na
    Hu Q; Luo Z; Zhou H; Cao Z
    Waste Manag; 2023 Jul; 167():204-212. PubMed ID: 37269584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of metals extraction from spent lithium-ion batteries by sulphuric acid and sodium metabisulphite through a techno-economic evaluation.
    Vieceli N; Nogueira CA; Pereira MFC; Durão FO; Guimarães C; Margarido F
    J Environ Manage; 2018 Dec; 228():140-148. PubMed ID: 30216828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal treatment and ammoniacal leaching for the recovery of valuable metals from spent lithium-ion batteries.
    Chen Y; Liu N; Hu F; Ye L; Xi Y; Yang S
    Waste Manag; 2018 May; 75():469-476. PubMed ID: 29478957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone.
    Jha MK; Kumari A; Jha AK; Kumar V; Hait J; Pandey BD
    Waste Manag; 2013 Sep; 33(9):1890-7. PubMed ID: 23773705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid extraction of valuable metals from spent LiNi
    Zhang J; Hu X; He T; Yuan X; Li X; Shi H; Yang L; Shao P; Wang C; Luo X
    Waste Manag; 2023 Jun; 165():19-26. PubMed ID: 37075685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.