These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 26087879)

  • 1. Computational fluid dynamics vs. inverse dynamics methods to determine passive drag in two breaststroke glide positions.
    Costa L; Mantha VR; Silva AJ; Fernandes RJ; Marinho DA; Vilas-Boas JP; Machado L; Rouboa A
    J Biomech; 2015 Jul; 48(10):2221-6. PubMed ID: 26087879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The accuracy of computational fluid dynamics analysis of the passive drag of a male swimmer.
    Bixler B; Pease D; Fairhurst F
    Sports Biomech; 2007 Jan; 6(1):81-98. PubMed ID: 17542180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrodynamic drag during gliding in swimming.
    Marinho DA; Reis VM; Alves FB; Vilas-Boas JP; Machado L; Silva AJ; Rouboa AI
    J Appl Biomech; 2009 Aug; 25(3):253-7. PubMed ID: 19827475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Effect of Depth on Drag During the Streamlined Glide: A Three-Dimensional CFD Analysis.
    Novais ML; Silva AJ; Mantha VR; Ramos RJ; Rouboa AI; Vilas-Boas JP; Luís SR; Marinho DA
    J Hum Kinet; 2012 Jun; 33():55-62. PubMed ID: 23487502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of the drag coefficient during the first and second gliding positions of the breaststroke underwater stroke.
    Vilas-Boas JP; Costa L; Fernandes RJ; Ribeiro J; Figueiredo P; Marinho D; Silva AJ; Rouboa A; Machado L
    J Appl Biomech; 2010 Aug; 26(3):324-31. PubMed ID: 20841624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of wall shear stress around a competitive swimmer using 3D Navier-Stokes equations in CFD.
    Popa CV; Zaidi H; Arfaoui A; Polidori G; Taiar R; Fohanno S
    Acta Bioeng Biomech; 2011; 13(1):3-11. PubMed ID: 21500758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of passive drag in swimming by numerical simulation and analytical procedure.
    Barbosa TM; Ramos R; Silva AJ; Marinho DA
    J Sports Sci; 2018 Mar; 36(5):492-498. PubMed ID: 28453398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Hydrodynamic Study of the Swimming Gliding: a Two-Dimensional Computational Fluid Dynamics (CFD) Analysis.
    Marinho DA; Barbosa TM; Rouboa AI; Silva AJ
    J Hum Kinet; 2011 Sep; 29():49-57. PubMed ID: 23486656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of drafting effects in swimming using computational fluid dynamics.
    Silva AJ; Rouboa A; Moreira A; Reis VM; Alves F; Vilas-Boas JP; Marinho DA
    J Sports Sci Med; 2008; 7(1):60-6. PubMed ID: 24150135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational fluid dynamics study of swimmer's hand velocity, orientation, and shape: contributions to hydrodynamics.
    Bilinauskaite M; Mantha VR; Rouboa AI; Ziliukas P; Silva AJ
    Biomed Res Int; 2013; 2013():140487. PubMed ID: 23691493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Techniques and considerations for monitoring swimmers' passive drag.
    Scurati R; Gatta G; Michielon G; Cortesi M
    J Sports Sci; 2019 May; 37(10):1168-1180. PubMed ID: 30449240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Backstroke to Breaststroke Turning Performance in Age-Group Swimmers: Hydrodynamic Characteristics and Pull-Out Strategy.
    Chainok P; Machado L; de Jesus K; Abraldes JA; Borgonovo-Santos M; Fernandes RJ; Vilas-Boas JP
    Int J Environ Res Public Health; 2021 Feb; 18(4):. PubMed ID: 33672908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrodynamics optimization in butterfly swimming: position, drag coefficient and performance.
    Taïar R; Sagnes P; Henry C; Dufour AB; Rouard AH
    J Biomech; 1999 Aug; 32(8):803-10. PubMed ID: 10433422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Turbulence model choice for the calculation of drag forces when using the CFD method.
    Zaïdi H; Fohanno S; Taïar R; Polidori G
    J Biomech; 2010 Feb; 43(3):405-11. PubMed ID: 19889420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Explosive lower limb extension mechanics: An on-land vs. in-water exploratory comparison.
    Guignard B; Lauer J; Samozino P; Mourão L; Vilas-Boas JP; Rouard AH
    J Biomech; 2017 Dec; 65():106-114. PubMed ID: 29089109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Steady hydrodynamic interaction between human swimmers.
    Yuan ZM; Li M; Ji CY; Li L; Jia L; Incecik A
    J R Soc Interface; 2019 Jan; 16(150):20180768. PubMed ID: 30958151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulating vortex generation to investigate the propulsive and braking mechanisms of breaststroke kick using computational fluid dynamics on a breaststroke swimmer.
    Tanaka T; Hayashi T; Isaka T
    J Biomech; 2024 Nov; 176():112329. PubMed ID: 39305856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of a postural change of the swimmer's head in hydrodynamic performances using 3D CFD.
    Popa CV; Arfaoui A; Fohanno S; Taïar R; Polidori G
    Comput Methods Biomech Biomed Engin; 2014; 17(4):344-51. PubMed ID: 22587390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active drag, useful mechanical power output and hydrodynamic force coefficient in different swimming strokes at maximal velocity.
    Kolmogorov SV; Duplishcheva OA
    J Biomech; 1992 Mar; 25(3):311-8. PubMed ID: 1564064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of swimmer's hand/forearm acceleration on propulsive forces generation using computational fluid dynamics.
    Rouboa A; Silva A; Leal L; Rocha J; Alves F
    J Biomech; 2006; 39(7):1239-48. PubMed ID: 15950980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.