These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 26087892)

  • 1. Microfluidic Platform for Studying Chemotaxis of Adhesive Cells Revealed a Gradient-Dependent Migration and Acceleration of Cancer Stem Cells.
    Zou H; Yue W; Yu WK; Liu D; Fong CC; Zhao J; Yang M
    Anal Chem; 2015 Jul; 87(14):7098-108. PubMed ID: 26087892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A radial microfluidic platform for higher throughput chemotaxis studies with individual gradient control.
    Wu J; Kumar-Kanojia A; Hombach-Klonisch S; Klonisch T; Lin F
    Lab Chip; 2018 Dec; 18(24):3855-3864. PubMed ID: 30427358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A parallel-gradient microfluidic chamber for quantitative analysis of breast cancer cell chemotaxis.
    Saadi W; Wang SJ; Lin F; Jeon NL
    Biomed Microdevices; 2006 Jun; 8(2):109-18. PubMed ID: 16688570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent developments in microfluidics-based chemotaxis studies.
    Wu J; Wu X; Lin F
    Lab Chip; 2013 Jul; 13(13):2484-99. PubMed ID: 23712326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of Gradients on a Microfluidic Device: Toward a High-Throughput Investigation of Spermatozoa Chemotaxis.
    Zhang Y; Xiao RR; Yin T; Zou W; Tang Y; Ding J; Yang J
    PLoS One; 2015; 10(11):e0142555. PubMed ID: 26555941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis.
    Diao J; Young L; Kim S; Fogarty EA; Heilman SM; Zhou P; Shuler ML; Wu M; DeLisa MP
    Lab Chip; 2006 Mar; 6(3):381-8. PubMed ID: 16511621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic monitoring of Pseudomonas aeruginosa chemotaxis under the continuous chemical gradient.
    Jeong HH; Lee SH; Kim JM; Kim HE; Kim YG; Yoo JY; Chang WS; Lee CS
    Biosens Bioelectron; 2010 Oct; 26(2):351-6. PubMed ID: 20810268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A tuneable microfluidic system for long duration chemotaxis experiments in a 3D collagen matrix.
    Aizel K; Clark AG; Simon A; Geraldo S; Funfak A; Vargas P; Bibette J; Vignjevic DM; Bremond N
    Lab Chip; 2017 Nov; 17(22):3851-3861. PubMed ID: 29022983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MDA-MB-231 Breast Cancer Cells and Their CSC Population Migrate Towards Low Oxygen in a Microfluidic Gradient Device.
    Sleeboom JJF; Toonder JMJD; Sahlgren CM
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30301222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative and dynamic assay of single cell chemotaxis.
    Lee SS; Horvath P; Pelet S; Hegemann B; Lee LP; Peter M
    Integr Biol (Camb); 2012 Apr; 4(4):381-90. PubMed ID: 22230969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Infection and immunity on a chip: a compartmentalised microfluidic platform to monitor immune cell behaviour in real time.
    Gopalakrishnan N; Hannam R; Casoni GP; Barriet D; Ribe JM; Haug M; Halaas Ø
    Lab Chip; 2015 Mar; 15(6):1481-7. PubMed ID: 25608968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic gradient platforms for controlling cellular behavior.
    Chung BG; Choo J
    Electrophoresis; 2010 Sep; 31(18):3014-27. PubMed ID: 20734372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microfluidic Transwell to study chemotaxis.
    Zhang C; Barrios MP; Alani RM; Cabodi M; Wong JY
    Exp Cell Res; 2016 Mar; 342(2):159-65. PubMed ID: 26988422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A quantitative observation and imaging of single tumor cell migration and deformation using a multi-gap microfluidic device representing the blood vessel.
    Chaw KC; Manimaran M; Tay FE; Swaminathan S
    Microvasc Res; 2006 Nov; 72(3):153-60. PubMed ID: 17081570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffusion- and convection-based activation of Wnt/β-catenin signaling in a gradient generating microfluidic chip.
    Kim C; Kreppenhofer K; Kashef J; Gradl D; Herrmann D; Schneider M; Ahrens R; Guber A; Wedlich D
    Lab Chip; 2012 Dec; 12(24):5186-94. PubMed ID: 23108330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hydrogel-based microfluidic device for the studies of directed cell migration.
    Cheng SY; Heilman S; Wasserman M; Archer S; Shuler ML; Wu M
    Lab Chip; 2007 Jun; 7(6):763-9. PubMed ID: 17538719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic platform for single cell analysis under dynamic spatial and temporal stimulation.
    Song J; Ryu H; Chung M; Kim Y; Blum Y; Lee SS; Pertz O; Jeon NL
    Biosens Bioelectron; 2018 May; 104():58-64. PubMed ID: 29306762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neutrophil migration under spatially-varying chemoattractant gradient profiles.
    Halilovic I; Wu J; Alexander M; Lin F
    Biomed Microdevices; 2015; 17(3):9963. PubMed ID: 25998723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Static Microfluidic Device for Investigating the Chemotaxis Response to Stable, Non-linear Gradients.
    Sule N; Penarete-Acosta D; Englert DL; Jayaraman A
    Methods Mol Biol; 2018; 1729():47-59. PubMed ID: 29429081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hybrid microfluidic-vacuum device for direct interfacing with conventional cell culture methods.
    Chung BG; Park JW; Hu JS; Huang C; Monuki ES; Jeon NL
    BMC Biotechnol; 2007 Sep; 7():60. PubMed ID: 17883868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.