BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 26087946)

  • 21. Characterization of rhamnolipid biosurfactants produced by recombinant Pseudomonas aeruginosa strain DAB with removal of crude oil.
    He C; Dong W; Li J; Li Y; Huang C; Ma Y
    Biotechnol Lett; 2017 Sep; 39(9):1381-1388. PubMed ID: 28600649
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent progress towards industrial rhamnolipids fermentation: Process optimization and foam control.
    Jiang J; Zu Y; Li X; Meng Q; Long X
    Bioresour Technol; 2020 Feb; 298():122394. PubMed ID: 31757615
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Two schemes for production of biosurfactant from Pseudomonas aeruginosa MR01: Applying residues from soybean oil industry and silica sol-gel immobilized cells.
    Bagheri Lotfabad T; Ebadipour N; Roostaazad R; Partovi M; Bahmaei M
    Colloids Surf B Biointerfaces; 2017 Apr; 152():159-168. PubMed ID: 28110037
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cassava wastewater as a substrate for the simultaneous production of rhamnolipids and polyhydroxyalkanoates by Pseudomonas aeruginosa.
    Costa SG; Lépine F; Milot S; Déziel E; Nitschke M; Contiero J
    J Ind Microbiol Biotechnol; 2009 Aug; 36(8):1063-72. PubMed ID: 19471980
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of rhamnolipid biosurfactants by methylene blue complexation.
    Pinzon NM; Ju LK
    Appl Microbiol Biotechnol; 2009 Apr; 82(5):975-81. PubMed ID: 19214498
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recycling of cooking oil fume condensate for the production of rhamnolipids by Pseudomonas aeruginosa WB505.
    Wu J; Zhang J; Zhang H; Gao M; Liu L; Zhan X
    Bioprocess Biosyst Eng; 2019 May; 42(5):777-784. PubMed ID: 30741355
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of rhamnolipids produced by non-pathogenic Acinetobacter and Enterobacter bacteria.
    Hošková M; Schreiberová O; Ježdík R; Chudoba J; Masák J; Sigler K; Rezanka T
    Bioresour Technol; 2013 Feb; 130():510-6. PubMed ID: 23313768
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of rhamnolipids produced by a Pseudomonas aeruginosa mutant strain grown on waste oils.
    Raza ZA; Khalid ZM; Banat IM
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Nov; 44(13):1367-73. PubMed ID: 20183494
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improvement in Production of Rhamnolipids Using Fried Oil with Hydrophilic Co-substrate by Indigenous Pseudomonas aeruginosa NJ2 and Characterizations.
    Pathania AS; Jana AK
    Appl Biochem Biotechnol; 2020 Jul; 191(3):1223-1246. PubMed ID: 32036539
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Overproduction of rhamnolipid by fed-batch cultivation of Pseudomonas aeruginosa in a lab-scale fermenter under tight DO control.
    Bazsefidpar S; Mokhtarani B; Panahi R; Hajfarajollah H
    Biodegradation; 2019 Feb; 30(1):59-69. PubMed ID: 30600422
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oils.
    Haba E; Espuny MJ; Busquets M; Manresa A
    J Appl Microbiol; 2000 Mar; 88(3):379-87. PubMed ID: 10747218
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetic modeling of rhamnolipid production by Pseudomonas aeruginosa PAO1 including cell density-dependent regulation.
    Henkel M; Schmidberger A; Vogelbacher M; Kühnert C; Beuker J; Bernard T; Schwartz T; Syldatk C; Hausmann R
    Appl Microbiol Biotechnol; 2014 Aug; 98(16):7013-25. PubMed ID: 24770383
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Repeated pH-stat fed-batch fermentation for rhamnolipid production with indigenous Pseudomonas aeruginosa S2.
    Chen SY; Wei YH; Chang JS
    Appl Microbiol Biotechnol; 2007 Aug; 76(1):67-74. PubMed ID: 17457541
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimization of the production of rhamnolipids by Pseudomonas aeruginosa UFPEDA 614 in solid-state culture.
    Camilios Neto D; Meira JA; de Araújo JM; Mitchell DA; Krieger N
    Appl Microbiol Biotechnol; 2008 Dec; 81(3):441-8. PubMed ID: 18766338
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering the biosynthesis of novel rhamnolipids in Escherichia coli for enhanced oil recovery.
    Han L; Liu P; Peng Y; Lin J; Wang Q; Ma Y
    J Appl Microbiol; 2014 Jul; 117(1):139-50. PubMed ID: 24703158
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improved production of biosurfactant by a Pseudomonas aeruginosa mutant using vegetable oil refinery wastes.
    Raza ZA; Rehman A; Khan MS; Khalid ZM
    Biodegradation; 2007 Feb; 18(1):115-21. PubMed ID: 16491304
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pseudomonas aeruginosa LBI production as an integrated process using the wastes from sunflower-oil refining as a substrate.
    Benincasa M; Accorsini FR
    Bioresour Technol; 2008 Jun; 99(9):3843-9. PubMed ID: 17698353
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microbial production of rhamnolipids: opportunities, challenges and strategies.
    Chong H; Li Q
    Microb Cell Fact; 2017 Aug; 16(1):137. PubMed ID: 28779757
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials.
    Rahman KS; Rahman TJ; McClean S; Marchant R; Banat IM
    Biotechnol Prog; 2002; 18(6):1277-81. PubMed ID: 12467462
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemical characterization and physical and biological activities of rhamnolipids produced by Pseudomonas aeruginosa BN10.
    Christova N; Tuleva B; Cohenb R; Ivanova G; Stoevd G; Stoilova-Disheva M; Stoineva I
    Z Naturforsch C J Biosci; 2011; 66(7-8):394-402. PubMed ID: 21950164
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.