These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 26087992)

  • 1. Efficient gas-liquid contact using microfluidic membrane devices with staggered herringbone mixers.
    Femmer T; Eggersdorfer ML; Kuehne AJ; Wessling M
    Lab Chip; 2015 Aug; 15(15):3132-7. PubMed ID: 26087992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Convex Grooves in Staggered Herringbone Mixer Improve Mixing Efficiency of Laminar Flow in Microchannel.
    Kwak TJ; Nam YG; Najera MA; Lee SW; Strickler JR; Chang WJ
    PLoS One; 2016; 11(11):e0166068. PubMed ID: 27814386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mixing and segregation of microspheres in microchannel flows of mono- and bidispersed suspensions.
    Gao C; Xu B; Gilchrist JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 2):036311. PubMed ID: 19392053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic Manufacturing of Polymeric Nanoparticles: Comparing Flow Control of Multiscale Structure in Single-Phase Staggered Herringbone and Two-Phase Reactors.
    Xu Z; Lu C; Riordon J; Sinton D; Moffitt MG
    Langmuir; 2016 Dec; 32(48):12781-12789. PubMed ID: 27934536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A practical guide to the staggered herringbone mixer.
    Williams MS; Longmuir KJ; Yager P
    Lab Chip; 2008 Jul; 8(7):1121-9. PubMed ID: 18584088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering and analysis of surface interactions in a microfluidic herringbone micromixer.
    Forbes TP; Kralj JG
    Lab Chip; 2012 Aug; 12(15):2634-7. PubMed ID: 22706612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PDMS-based turbulent microfluidic mixer.
    You JB; Kang K; Tran TT; Park H; Hwang WR; Kim JM; Im SG
    Lab Chip; 2015 Apr; 15(7):1727-35. PubMed ID: 25671438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Holographic fabrication of three-dimensional nanostructures for microfluidic passive mixing.
    Park SG; Lee SK; Moon JH; Yang SM
    Lab Chip; 2009 Nov; 9(21):3144-50. PubMed ID: 19823731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ZnO Nanowire-Anchored Microfluidic Device With Herringbone Structure Fabricated by Maskless Photolithography.
    Sooriyaarachchi D; Maharubin S; Tan GZ
    Biomed Eng Comput Biol; 2020; 11():1179597220941431. PubMed ID: 32704232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mixing Optimization in Grooved Serpentine Microchannels.
    Rhoades T; Kothapalli CR; Fodor PS
    Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31947897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative characterization of magnetic separators: comparison of systems with and without integrated microfluidic mixers.
    Lund-Olesen T; Bruus H; Hansen MF
    Biomed Microdevices; 2007 Apr; 9(2):195-205. PubMed ID: 17165127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of a static mixer as a new microfluidic method for liposome formulation.
    Ota A; Mochizuki A; Sou K; Takeoka S
    Front Bioeng Biotechnol; 2023; 11():1229829. PubMed ID: 37675402
    [No Abstract]   [Full Text] [Related]  

  • 13. Mixing in microfluidic devices and enhancement methods.
    Ward K; Fan ZH
    J Micromech Microeng; 2015 Sep; 25(9):. PubMed ID: 26549938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Numerical Research of Herringbone Passive Mixer at Low Reynold Number Regime.
    Wang D; Ba D; Liu K; Hao M; Gao Y; Wu Z; Mei Q
    Micromachines (Basel); 2017 Oct; 8(11):. PubMed ID: 30400515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of turbulent gas-liquid contact in a static mixer on Cryptosporidium parvum oocyst inactivation by ozone.
    Craik SA; Smith DW; Chandrakanth M; Belosevic M
    Water Res; 2003 Sep; 37(15):3622-31. PubMed ID: 12867328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing micromixer design for enhancing dielectrophoretic microconcentrator performance.
    Lee HY; Voldman J
    Anal Chem; 2007 Mar; 79(5):1833-9. PubMed ID: 17253658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of electrokinetically driven microfluidic T-mixer using frequency modulated electric field and channel geometry effects.
    Yan D; Yang C; Miao J; Lam Y; Huang X
    Electrophoresis; 2009 Sep; 30(18):3144-52. PubMed ID: 19764063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane-activated microfluidic rotary devices for pumping and mixing.
    Tseng HY; Wang CH; Lin WY; Lee GB
    Biomed Microdevices; 2007 Aug; 9(4):545-54. PubMed ID: 17505888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Herringbone-Patterned 3D-Printed Devices as Alternatives to Microfluidics for Reproducible Production of Lipid Polymer Hybrid Nanoparticles.
    Bokare A; Takami A; Kim JH; Dong A; Chen A; Valerio R; Gunn S; Erogbogbo F
    ACS Omega; 2019 Mar; 4(3):4650-4657. PubMed ID: 31459652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the staggered herringbone mixer with a simple analytical model.
    Stroock AD; McGraw GJ
    Philos Trans A Math Phys Eng Sci; 2004 May; 362(1818):971-86. PubMed ID: 15306479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.