These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 26088155)

  • 1. Alteration of the substrate specificity of l-amino acid ligase and selective synthesis of Met-Gly as a salt taste enhancer.
    Kino H; Kino K
    Biosci Biotechnol Biochem; 2015; 79(11):1827-32. PubMed ID: 26088155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective production of Pro-Gly by mutagenesis of l-amino acid ligase.
    Kino H; Nakajima S; Arai T; Kino K
    J Biosci Bioeng; 2016 Aug; 122(2):155-9. PubMed ID: 27017332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single mutation alters the substrate specificity of L-amino acid ligase.
    Tsuda T; Asami M; Koguchi Y; Kojima S
    Biochemistry; 2014 Apr; 53(16):2650-60. PubMed ID: 24702628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The structure of L-amino-acid ligase from Bacillus licheniformis.
    Suzuki M; Takahashi Y; Noguchi A; Arai T; Yagasaki M; Kino K; Saito J
    Acta Crystallogr D Biol Crystallogr; 2012 Nov; 68(Pt 11):1535-40. PubMed ID: 23090402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel l-amino acid ligase from bacillus licheniformis.
    Kino K; Noguchi A; Nakazawa Y; Yagasaki M
    J Biosci Bioeng; 2008 Sep; 106(3):313-5. PubMed ID: 18930013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of RizA, an L-amino-acid ligase from Bacillus subtilis.
    Kagawa W; Arai T; Ishikura S; Kino K; Kurumizaka H
    Acta Crystallogr F Struct Biol Commun; 2015 Sep; 71(Pt 9):1125-30. PubMed ID: 26323296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel L-amino acid ligase from Bacillus subtilis NBRC3134, a microorganism producing peptide-antibiotic rhizocticin.
    Kino K; Kotanaka Y; Arai T; Yagasaki M
    Biosci Biotechnol Biochem; 2009 Apr; 73(4):901-7. PubMed ID: 19352016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and characterization of a novel L-amino acid ligase from Photorhabdus luminescens subsp. laumondii TT01.
    Kino K; Noguchi A; Arai T; Yagasaki M
    J Biosci Bioeng; 2010 Jul; 110(1):39-41. PubMed ID: 20541113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specificity of binding of NH2-terminal residue of proteins to ubiquitin-protein ligase. Use of amino acid derivatives to characterize specific binding sites.
    Reiss Y; Kaim D; Hershko A
    J Biol Chem; 1988 Feb; 263(6):2693-8. PubMed ID: 3343227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New L-amino acid ligases catalyzing oligopeptide synthesis from various microorganisms.
    Arai T; Kino K
    Biosci Biotechnol Biochem; 2010; 74(8):1572-7. PubMed ID: 20699590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The amino-acid substituents of dipeptide substrates of cathepsin C can determine the rate-limiting steps of catalysis.
    Rubach JK; Cui G; Schneck JL; Taylor AN; Zhao B; Smallwood A; Nevins N; Wisnoski D; Thrall SH; Meek TD
    Biochemistry; 2012 Sep; 51(38):7551-68. PubMed ID: 22928782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dipeptide synthesis by L-amino acid ligase from Ralstonia solanacearum.
    Kino K; Nakazawa Y; Yagasaki M
    Biochem Biophys Res Commun; 2008 Jul; 371(3):536-40. PubMed ID: 18445480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel L-amino acid ligase from Bacillus subtilis NBRC3134 catalyzed oligopeptide synthesis.
    Kino K; Arai T; Tateiwa D
    Biosci Biotechnol Biochem; 2010; 74(1):129-34. PubMed ID: 20057135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and enzymatic characterization of BacD, an L-amino acid dipeptide ligase from Bacillus subtilis.
    Shomura Y; Hinokuchi E; Ikeda H; Senoo A; Takahashi Y; Saito J; Komori H; Shibata N; Yonetani Y; Higuchi Y
    Protein Sci; 2012 May; 21(5):707-16. PubMed ID: 22407814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and NMR investigations of the ternary adducts of twenty alpha-amino acids and selected dipeptides with a chiral, diaqua-ytterbium complex.
    Dickins RS; Batsanov AS; Howard JA; Parker D; Puschmann H; Salamano S
    Dalton Trans; 2004 Jan; (1):70-80. PubMed ID: 15356744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding of the oxo-rhenium(V) core to methionine and to N-terminal histidine dipeptides.
    Tessier C; Rochon FD; Beauchamp AL
    Inorg Chem; 2004 Nov; 43(23):7463-73. PubMed ID: 15530097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Helical pores self-assembled from homochiral dendritic dipeptides based on L-Tyr and nonpolar alpha-amino acids.
    Percec V; Dulcey AE; Peterca M; Adelman P; Samant R; Balagurusamy VS; Heiney PA
    J Am Chem Soc; 2007 May; 129(18):5992-6002. PubMed ID: 17429976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Part I: surface-enhanced Raman spectroscopy investigation of amino acids and their homodipeptides adsorbed on colloidal silver.
    Podstawka E; Ozaki Y; Proniewicz LM
    Appl Spectrosc; 2004 May; 58(5):570-80. PubMed ID: 15165334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. L-amino acid ligase from Pseudomonas syringae producing tabtoxin can be used for enzymatic synthesis of various functional peptides.
    Arai T; Arimura Y; Ishikura S; Kino K
    Appl Environ Microbiol; 2013 Aug; 79(16):5023-9. PubMed ID: 23770908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclic retro-inverso dipeptides with two aromatic side chains. II. Conformational analysis.
    Yamazaki T; Nunami K; Goodman M
    Biopolymers; 1991 Nov; 31(13):1513-28. PubMed ID: 1814501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.