These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
369 related articles for article (PubMed ID: 26088348)
21. Evaluation of In Vitro α-Amylase and α-Glucosidase Inhibitory Potentials of 14 Medicinal Plants Constituted in Thai Folk Antidiabetic Formularies. Somtimuang C; Olatunji OJ; Ovatlarnporn C Chem Biodivers; 2018 Apr; 15(4):e1800025. PubMed ID: 29460340 [TBL] [Abstract][Full Text] [Related]
22. Unraveling the complexity of complex mixtures by combining high-resolution pharmacological, analytical and spectroscopic techniques: antidiabetic constituents in Chinese medicinal plants. Zhao Y; Kongstad KT; Liu Y; He C; Staerk D Faraday Discuss; 2019 Aug; 218(0):202-218. PubMed ID: 31119225 [TBL] [Abstract][Full Text] [Related]
23. Anti-diabetic and anti-hypertensive potential of sprouted and solid-state bioprocessed soybean. McCue P; Kwon YI; Shetty K Asia Pac J Clin Nutr; 2005; 14(2):145-52. PubMed ID: 15927931 [TBL] [Abstract][Full Text] [Related]
24. In Vitro Antidiabetic and Antioxidant Effects of Different Extracts of Goboza M; Meyer M; Aboua YG; Oguntibeju OO Molecules; 2020 Nov; 25(23):. PubMed ID: 33256043 [TBL] [Abstract][Full Text] [Related]
25. New natural protein tyrosine phosphatase 1B inhibitors from Wang X; Deng Y; Wang J; Qin L; Du Y; Zhang Q; Wu D; Wu X; Xie J; He Y; Tan D J Enzyme Inhib Med Chem; 2024 Dec; 39(1):2360063. PubMed ID: 38873930 [TBL] [Abstract][Full Text] [Related]
26. Crude extract and isolated bioactive compounds from Notholirion thomsonianum (Royale) Stapf as multitargets antidiabetic agents: in-vitro and molecular docking approaches. Mahnashi MH; Alqahtani YS; Alqarni AO; Alyami BA; Jan MS; Ayaz M; Ullah F; Rashid U; Sadiq A BMC Complement Med Ther; 2021 Oct; 21(1):270. PubMed ID: 34706708 [TBL] [Abstract][Full Text] [Related]
27. Profiling of Antidiabetic Bioactive Flavonoid Compounds from an Edible Plant Kudzu ( Wang W; Liu Y; Liu D; Zhou H; Li Y; Yuan W; Xu S; Wang J; Liang X; Weng J J Agric Food Chem; 2024 Jul; 72(28):15704-15714. PubMed ID: 38976778 [No Abstract] [Full Text] [Related]
28. Coumarins from Angelica decursiva inhibit α-glucosidase activity and protein tyrosine phosphatase 1B. Ali MY; Jannat S; Jung HA; Jeong HO; Chung HY; Choi JS Chem Biol Interact; 2016 May; 252():93-101. PubMed ID: 27085377 [TBL] [Abstract][Full Text] [Related]
29. Antidiabetic Naphthoquinones and Their Plant Resources in Thailand. Shah MA; Keach JE; Panichayupakaranant P Chem Pharm Bull (Tokyo); 2018; 66(5):483-492. PubMed ID: 29710045 [TBL] [Abstract][Full Text] [Related]
30. Inhibitory effect of Azadirachta indica A. juss leaf extract on the activities of alpha-amylase and alpha-glucosidase. Kazeem MI; Dansu TV; Adeola SA Pak J Biol Sci; 2013 Nov; 16(21):1358-62. PubMed ID: 24511747 [TBL] [Abstract][Full Text] [Related]
31. Mineral Analysis, Boulfia M; Lamchouri F; Toufik H Biomed Res Int; 2021; 2021():1585692. PubMed ID: 34485509 [TBL] [Abstract][Full Text] [Related]
32. Potent α-glucosidase and protein tyrosine phosphatase 1B inhibitors from Artemisia capillaris. Nurul Islam M; Jung HA; Sohn HS; Kim HM; Choi JS Arch Pharm Res; 2013 May; 36(5):542-52. PubMed ID: 23435948 [TBL] [Abstract][Full Text] [Related]
33. Antidiabetic potential of Bauhinia forficata Link leaves: a non-cytotoxic source of lipase and glycoside hydrolases inhibitors and molecules with antioxidant and antiglycation properties. Franco RR; Mota Alves VH; Ribeiro Zabisky LF; Justino AB; Martins MM; Saraiva AL; Goulart LR; Espindola FS Biomed Pharmacother; 2020 Mar; 123():109798. PubMed ID: 31877553 [TBL] [Abstract][Full Text] [Related]
34. Inhibitory effect of saccharides and phenolic compounds from maize silks on intestinal α-glucosidases. Alvarado-Díaz CS; Gutiérrez-Méndez N; Mendoza-López ML; Rodríguez-Rodríguez MZ; Quintero-Ramos A; Landeros-Martínez LL; Rodríguez-Valdez LM; Rodríguez-Figueroa JC; Pérez-Vega S; Salmeron-Ochoa I; Leal-Ramos MY J Food Biochem; 2019 Jul; 43(7):e12896. PubMed ID: 31353692 [TBL] [Abstract][Full Text] [Related]
35. The Inhibition of α-Glucosidase, α-Amylase and Protein Glycation by Phenolic Extracts of Kicel A; Magiera A; Skrzywanek M; Malczuk M; Olszewska MA Molecules; 2022 Oct; 27(20):. PubMed ID: 36296676 [TBL] [Abstract][Full Text] [Related]
36. Influence of In Vitro Human Digestion Simulation on the Phenolics Contents and Biological Activities of the Aqueous Extracts from Turkish İnan Y; Akyüz S; Kurt-Celep I; Celep E; Yesilada E Molecules; 2021 Sep; 26(17):. PubMed ID: 34500753 [TBL] [Abstract][Full Text] [Related]
37. Isolation and characterization of resveratrol oligomers from the stem bark of Hopea ponga (Dennst.) Mabb. And their antidiabetic effect by modulation of digestive enzymes, protein glycation and glucose uptake in L6 myocytes. Sasikumar P; Lekshmy K; Sini S; Prabha B; Kumar NA; Sivan VV; Jithin MM; Jayamurthy P; Shibi IG; Radhakrishnan KV J Ethnopharmacol; 2019 May; 236():196-204. PubMed ID: 30844488 [TBL] [Abstract][Full Text] [Related]
38. Development of an antidiabetic polyherbal formulation (ADPHF6) and assessment of its antioxidant activity against ROS-induced damage in pUC19 and human lymphocytes - an in vitro study. Shanmugasundaram D; Duraiswamy A; Viswanathan A; Sasikumar CS; Cherian SM; Cherian KM J Complement Integr Med; 2016 Sep; 13(3):267-274. PubMed ID: 27352446 [TBL] [Abstract][Full Text] [Related]
39. Flavonoids as potential agents in the management of type 2 diabetes through the modulation of α-amylase and α-glucosidase activity: a review. Proença C; Ribeiro D; Freitas M; Fernandes E Crit Rev Food Sci Nutr; 2022; 62(12):3137-3207. PubMed ID: 33427491 [TBL] [Abstract][Full Text] [Related]
40. The in vitro evaluation of antioxidative activity, α-glucosidase and α-amylase enzyme inhibitory of natural phenolic extracts. Djeridane A; Hamdi A; Bensania W; Cheifa K; Lakhdari I; Yousfi M Diabetes Metab Syndr; 2015; 9(4):324-31. PubMed ID: 25470628 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]