These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 26088458)

  • 1. Donor's position-specific channel interference in substituted biphenyl molecules.
    Mehboob Alam M
    Phys Chem Chem Phys; 2015 Jul; 17(27):17571-6. PubMed ID: 26088458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical control of channel interference in two-photon absorption processes.
    Alam MM; Chattopadhyaya M; Chakrabarti S; Ruud K
    Acc Chem Res; 2014 May; 47(5):1604-12. PubMed ID: 24758397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interplay of twist angle and solvents with two-photon optical channel interference in aryl-substituted BODIPY dyes.
    Alam MM; Misra R; Ruud K
    Phys Chem Chem Phys; 2017 Nov; 19(43):29461-29471. PubMed ID: 29077112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New design strategy for the two-photon active material based on push-pull substituted bisanthene molecule.
    Chattopadhyaya M; Alam MM; Chakrabarti S
    J Phys Chem A; 2011 Mar; 115(12):2607-14. PubMed ID: 21375281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvent induced channel interference in the two-photon absorption process--a theoretical study with a generalized few-state-model in three dimensions.
    Alam MM; Chattopadhyaya M; Chakrabarti S
    Phys Chem Chem Phys; 2012 Jan; 14(3):1156-65. PubMed ID: 22127437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the origin of large two-photon activity of DANS molecule.
    Alam MM; Chattopadhyaya M; Chakrabarti S
    J Phys Chem A; 2012 Nov; 116(45):11034-40. PubMed ID: 23092388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of twist angle dependent two-photon activity through the proper alignment of ground to excited state and excited state dipole moment vectors.
    Alam MM; Chattopadhyaya M; Chakrabarti S
    J Phys Chem A; 2012 Aug; 116(30):8067-73. PubMed ID: 22779774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Triply twisted Möbius annulene: a new class of two-photon active material--a computational study.
    Kundi V; Alam MM; Thankachan PP
    Phys Chem Chem Phys; 2015 Mar; 17(10):6827-33. PubMed ID: 25669484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of the substitution pattern on the intramolecular charge-transfer emissions in organoboron-based biphenyls, diphenylacetylenes, and stilbenes.
    Yan YQ; Li YB; Wang JW; Zhao CH
    Chem Asian J; 2013 Dec; 8(12):3164-76. PubMed ID: 24023028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Curious Case of Two-Photon Absorption in n-Helicene and n-Phenylene, n=6-10: Why n=7 is Different?
    Tejendra B; Rajput SS; Alam MM
    Chemphyschem; 2024 Feb; 25(3):e202300710. PubMed ID: 37936568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum-chemical calculations of the electronic structure of 2-amino-1,3-dicyano-5,6,7,8-tetrahydronaphthalene derivatives.
    Józefowicz M; Bajorek A; Pietrzak M; Heldt JR
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Sep; 113():137-44. PubMed ID: 23719413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-photon absorption properties of two-dimensional π-conjugated chromophores: combined experimental and theoretical study.
    Ohta K; Yamada S; Kamada K; Slepkov AD; Hegmann FA; Tykwinski RR; Shirtcliff LD; Haley MM; Sałek P; Gel'mukhanov F; Ågren H
    J Phys Chem A; 2011 Jan; 115(2):105-17. PubMed ID: 21158452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical study of the two-photon absorption properties of several asymmetrically substituted stilbenoid molecules.
    Ohta K; Antonov L; Yamada S; Kamada K
    J Chem Phys; 2007 Aug; 127(8):084504. PubMed ID: 17764266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calculation of two-photon absorption spectra of donor-pi-acceptor compounds in solution using quadratic response time-dependent density functional theory.
    Day PN; Nguyen KA; Pachter R
    J Chem Phys; 2006 Sep; 125(9):094103. PubMed ID: 16965068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopy of nitrophenolates in vacuo: effect of spacer, configuration, and microsolvation on the charge-transfer excitation energy.
    Brøndsted Nielsen S; Brøndsted Nielsen M; Rubio A
    Acc Chem Res; 2014 Apr; 47(4):1417-25. PubMed ID: 24673172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recognition properties of donor- and acceptor-modified biphenyl-DNA.
    Zahn A; Leumann CJ
    Chemistry; 2008; 14(4):1087-94. PubMed ID: 18041013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A critical theoretical study on the two-photon absorption properties of some selective triaryl borane-1-naphthylphenyl amine based charge transfer molecules.
    Alam MM; Chattopadhyaya M; Chakrabarti S
    Phys Chem Chem Phys; 2011 May; 13(20):9285-92. PubMed ID: 21475766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of two-photon absorption in organic compounds by pulse shaping: spectral dependence.
    Silva DL; Misoguti L; Mendonça CR
    J Phys Chem A; 2009 May; 113(19):5594-7. PubMed ID: 19382769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. General theory of excitation energy transfer in donor-mediator-acceptor systems.
    Kimura A
    J Chem Phys; 2009 Apr; 130(15):154103. PubMed ID: 19388732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intramolecular charge transfer processes in donor-acceptor substituted vinyltetrahydropyrenes.
    Sumalekshmy S; Gopidas KR
    Photochem Photobiol Sci; 2005 Jul; 4(7):539-46. PubMed ID: 15986062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.