BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 26088477)

  • 1. Controlled formation of closed-edge nanopores in graphene.
    He K; Robertson AW; Gong C; Allen CS; Xu Q; Zandbergen H; Grossman JC; Kirkland AI; Warner JH
    Nanoscale; 2015 Jul; 7(27):11602-10. PubMed ID: 26088477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward sensitive graphene nanoribbon-nanopore devices by preventing electron beam-induced damage.
    Puster M; Rodríguez-Manzo JA; Balan A; Drndić M
    ACS Nano; 2013 Dec; 7(12):11283-9. PubMed ID: 24224888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilization of graphene nanopore.
    Lee J; Yang Z; Zhou W; Pennycook SJ; Pantelides ST; Chisholm MF
    Proc Natl Acad Sci U S A; 2014 May; 111(21):7522-6. PubMed ID: 24821802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic Structure and Dynamics of Self-Limiting Sub-Nanometer Pores in Monolayer WS
    Ryu GH; France-Lanord A; Wen Y; Zhou S; Grossman JC; Warner JH
    ACS Nano; 2018 Nov; 12(11):11638-11647. PubMed ID: 30375855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanostructuring graphene by dense electronic excitation.
    Ochedowski O; Lehtinen O; Kaiser U; Turchanin A; Ban-d'Etat B; Lebius H; Karlušić M; Jakšić M; M Schleberger
    Nanotechnology; 2015 Nov; 26(46):465302. PubMed ID: 26510213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tailoring nanoporous graphene via machine learning: Predicting probabilities and formation times of arbitrary nanopore shapes.
    Sheshanarayana R; Govind Rajan A
    J Chem Phys; 2022 May; 156(20):204703. PubMed ID: 35649838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of Klein Edge Doublets from Graphene Monolayers.
    Kim JS; Warner JH; Robertson AW; Kirkland AI
    ACS Nano; 2015 Sep; 9(9):8916-22. PubMed ID: 26284501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selectively Sized Graphene-Based Nanopores for in Situ Single Molecule Sensing.
    Crick CR; Sze JY; Rosillo-Lopez M; Salzmann CG; Edel JB
    ACS Appl Mater Interfaces; 2015 Aug; 7(32):18188-94. PubMed ID: 26204996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elongated Silicon-Carbon Bonds at Graphene Edges.
    Chen Q; Robertson AW; He K; Gong C; Yoon E; Kirkland AI; Lee GD; Warner JH
    ACS Nano; 2016 Jan; 10(1):142-9. PubMed ID: 26619146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial blockage of ionic current for electrophoretic translocation of DNA through a graphene nanopore.
    Lv W; Liu S; Li X; Wu R
    Electrophoresis; 2014 Apr; 35(8):1144-51. PubMed ID: 24459097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of long and short DNA using nanopores with graphitic polyhedral edges.
    Freedman KJ; Ahn CW; Kim MJ
    ACS Nano; 2013 Jun; 7(6):5008-16. PubMed ID: 23713602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of graphene nanoribbons under low-voltage electron irradiation.
    Zhu W; Wang H; Yang W
    Nanoscale; 2012 Aug; 4(15):4555-61. PubMed ID: 22699261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sub-5 nm graphene nanopore fabrication by nitrogen ion etching induced by a low-energy electron beam.
    Fox DS; Maguire P; Zhou Y; Rodenburg C; O'Neill A; Coleman JN; Zhang H
    Nanotechnology; 2016 May; 27(19):195302. PubMed ID: 27040079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ observation of Pt nanoparticles on graphene layers under high temperature using aberration-corrected transmission electron microscopy.
    Hashimoto A; Takeguchi M
    J Electron Microsc (Tokyo); 2012; 61(6):409-13. PubMed ID: 22952302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation.
    Liu K; Feng J; Kis A; Radenovic A
    ACS Nano; 2014 Mar; 8(3):2504-11. PubMed ID: 24547924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction between single gold atom and the graphene edge: a study via aberration-corrected transmission electron microscopy.
    Wang H; Li K; Cheng Y; Wang Q; Yao Y; Schwingenschlögl U; Zhang X; Yang W
    Nanoscale; 2012 Apr; 4(9):2920-5. PubMed ID: 22456496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrophilic and size-controlled graphene nanopores for protein detection.
    Goyal G; Lee YB; Darvish A; Ahn CW; Kim MJ
    Nanotechnology; 2016 Dec; 27(49):495301. PubMed ID: 27827346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomically Sharp, Closed Bilayer Phosphorene Edges by Self-Passivation.
    Lee S; Lee Y; Ding LP; Lee K; Ding F; Kim K
    ACS Nano; 2022 Aug; 16(8):12822-12830. PubMed ID: 35904253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tailoring the hydrophobicity of graphene for its use as nanopores for DNA translocation.
    Schneider GF; Xu Q; Hage S; Luik S; Spoor JN; Malladi S; Zandbergen H; Dekker C
    Nat Commun; 2013; 4():2619. PubMed ID: 24126320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Graphene Nanopore Geometry on DNA Sequencing.
    Zhang Z; Shen J; Wang H; Wang Q; Zhang J; Liang L; Ågren H; Tu Y
    J Phys Chem Lett; 2014 May; 5(9):1602-7. PubMed ID: 26270103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.