These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 26088717)

  • 1. Effect of Intramedullary Rod Diameter on a String of Pearls Plate-Rod Construct in Mediolateral Bending: An In Vitro Mechanical Study.
    Rutherford S; Demianiuk RM; Benamou J; Beckett C; Ness MG; Déjardin LM
    Vet Surg; 2015 Aug; 44(6):737-43. PubMed ID: 26088717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of bending direction on the mechanical behaviour of 3.5 mm String-of-Pearls and Limited Contact Dynamic Compression Plate constructs.
    Benamou J; Demianiuk RM; Rutherford S; Beckett C; Ness MG; Haut RC; Déjardin LM
    Vet Comp Orthop Traumatol; 2015; 28(6):433-40. PubMed ID: 26449348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of screw type and distribution on the torsional stability of 3.5 mm string of pearls locking plate constructs.
    Demianiuk RM; Benamou J; Rutherford S; Beckett C; Ness MG; Déjardin LM
    Vet Surg; 2015 Jan; 44(1):119-25. PubMed ID: 25231907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of intramedullary pin size and monocortical screw configuration on locking compression plate-rod constructs in an in vitro fracture gap model.
    Pearson T; Glyde M; Hosgood G; Day R
    Vet Comp Orthop Traumatol; 2015; 28(2):95-103. PubMed ID: 25633043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of double locking plate constructs with single non-locking plate constructs in single cycle to failure in bending and torsion.
    Hutcheson KD; Butler JR; Elder SE
    Vet Comp Orthop Traumatol; 2015; 28(4):234-9. PubMed ID: 26037263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A biomechanical comparison of conventional dynamic compression plates and string-of-pearls™ locking plates using cantilever bending in a canine Ilial fracture model.
    Kenzig AR; Butler JR; Priddy LB; Lacy KR; Elder SH
    BMC Vet Res; 2017 Jul; 13(1):222. PubMed ID: 28705189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro biomechanical comparison of a plate-rod combination-construct and an interlocking nail-construct for experimentally induced gap fractures in canine tibiae.
    von Pfeil DJ; Déjardin LM; DeCamp CE; Meyer EG; Lansdowne JL; Weerts RJ; Haut RC
    Am J Vet Res; 2005 Sep; 66(9):1536-43. PubMed ID: 16261826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical testing of 3.5 mm locking and non-locking bone plates.
    DeTora M; Kraus K
    Vet Comp Orthop Traumatol; 2008; 21(4):318-22. PubMed ID: 18704237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An anatomical study of plate-rod fixation in feline tibiae.
    Gutbrod A; Vincenti S; Kühn K; Knell SC; Schmierer PA; Pozzi A
    Vet Surg; 2017 Oct; 46(7):909-914. PubMed ID: 28640396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical comparison of a locking compression plate combined with an intramedullary pin or a polyetheretherketone rod in a cadaveric canine tibia gap model.
    Beierer LH; Glyde M; Day RE; Hosgood GL
    Vet Surg; 2014 Nov; 43(8):1032-8. PubMed ID: 25132257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single cycle to failure in bending of three standard and five locking plates and plate constructs.
    Blake CA; Boudrieau RJ; Torrance BS; Tacvorian EK; Cabassu JB; Gaudette GR; Kowaleski MP
    Vet Comp Orthop Traumatol; 2011; 24(6):408-17. PubMed ID: 21938314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical comparison of mono- and bicortical screws in an experimentally induced gap fracture.
    Demner D; Garcia TC; Serdy MG; Hayashi K; Nir BA; Stover SM
    Vet Comp Orthop Traumatol; 2014; 27(6):422-9. PubMed ID: 25327936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical Comparison of Locking Compression Plate and Limited Contact Dynamic Compression Plate Combined with an Intramedullary Rod in a Canine Femoral Fracture-Gap Model.
    Matres-Lorenzo L; Diop A; Maurel N; Boucton MC; Bernard F; Bernardé A
    Vet Surg; 2016 Apr; 45(3):319-26. PubMed ID: 26909507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro biomechanical comparison of 3.5 string of pearl plate fixation to 3.5 locking compression plate fixation in a canine fracture gap model.
    Malenfant RC; Sod GA
    Vet Surg; 2014 May; 43(4):465-70. PubMed ID: 24720361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the mechanical behaviors of semicontoured, locking plate-rod fixation and anatomically contoured, conventional plate-rod fixation applied to experimentally induced gap fractures in canine femora.
    Goh CS; Santoni BG; Puttlitz CM; Palmer RH
    Am J Vet Res; 2009 Jan; 70(1):23-9. PubMed ID: 19119945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single cycle to failure in torsion of three standard and five locking plate constructs.
    Cabassu JB; Kowaleski MP; Skorinko JK; Blake CA; Gaudette GR; Boudrieau RJ
    Vet Comp Orthop Traumatol; 2011; 24(6):418-25. PubMed ID: 21938313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical properties of 18 different AO bone plates and the clamp-rod internal fixation system tested on a gap model construct.
    Zahn K; Frei R; Wunderle D; Linke B; Schwieger K; Guerguiev B; Pohler O; Matis U
    Vet Comp Orthop Traumatol; 2008; 21(3):185-94. PubMed ID: 18536843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro biomechanical comparison of 3.5 mm LC-DCP/intramedullary rod and 5 mm clamp-rod internal fixator (CRIF)/intramedullary rod fixation in a canine femoral gap model.
    Bonin GA; Baker ST; Davis CA; Bergerson CM; Hildebrandt AA; Hulse DA; Kerwin SC; Moreno MR; Saunders WB
    Vet Surg; 2014 Oct; 43(7):860-8. PubMed ID: 24484218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A biomechanical comparison of unilateral and bilateral String-of-Pearls™ locking plates in a canine distal humeral metaphyseal gap model.
    Hurt RJ; Syrcle JA; Elder S; McLaughlin R
    Vet Comp Orthop Traumatol; 2014; 27(3):186-91. PubMed ID: 24763388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of screw position on single cycle to failure in bending and torsion of a locking plate-rod construct in a synthetic feline femoral gap model.
    Niederhäuser SK; Tepic S; Weber UT
    Am J Vet Res; 2015 May; 76(5):402-10. PubMed ID: 25909372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.