These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 26088773)
1. Laser-induced fluorescence reader with a turbidimetric system for sandwich-type immunoassay using nanoparticles. Kim YH; Lim HB Anal Chim Acta; 2015 Jul; 883():32-6. PubMed ID: 26088773 [TBL] [Abstract][Full Text] [Related]
2. Cerium oxide-deposited mesoporous silica nanoparticles for the determination of carcinoembryonic antigen in serum using inductively coupled plasma-mass spectrometry. Choi HW; Lee KH; Hur NH; Lim HB Anal Chim Acta; 2014 Oct; 847():10-5. PubMed ID: 25261895 [TBL] [Abstract][Full Text] [Related]
3. Sample treatment platform using nanoparticles to determine salinomycin in flesh and meat. Park J; Lim HB Food Chem; 2014 Oct; 160():112-7. PubMed ID: 24799216 [TBL] [Abstract][Full Text] [Related]
4. Application of magnetic and core-shell nanoparticles to determine enrofloxacin and its metabolite using laser induced fluorescence microscope. Kim S; Ko J; Lim HB Anal Chim Acta; 2013 Apr; 771():37-41. PubMed ID: 23522110 [TBL] [Abstract][Full Text] [Related]
5. Selective and sensitive fluorescence detection method for pig IgG based on competitive immunosensing strategy and magnetic bioseparation. Zhao Q; Wu Q; Ma P; Xu L; Zhang F; Li D; Liu X; Xu S; Sun Y; Song D; Wang X Talanta; 2019 Apr; 195():103-108. PubMed ID: 30625519 [TBL] [Abstract][Full Text] [Related]
6. Silica nanoparticle-based microfluidic immunosensor with laser-induced fluorescence detection for the quantification of immunoreactive trypsin. Seia MA; Stege PW; Pereira SV; De Vito IE; Raba J; Messina GA Anal Biochem; 2014 Oct; 463():31-7. PubMed ID: 24983904 [TBL] [Abstract][Full Text] [Related]
7. An ultrasensitive immunosensor array for determination of staphylococcal enterotoxin B. Zhang X; Liu F; Yan R; Xue P; Li Y; Chen L; Song C; Liu C; Jin B; Zhang Z; Yang K Talanta; 2011 Aug; 85(2):1070-4. PubMed ID: 21726740 [TBL] [Abstract][Full Text] [Related]
8. Femtogram-level detection of Clostridium botulinum neurotoxin type A by sandwich immunoassay using nanoporous substrate and ultra-bright fluorescent suprananoparticles. Bok S; Korampally V; Darr CM; Folk WR; Polo-Parada L; Gangopadhyay K; Gangopadhyay S Biosens Bioelectron; 2013 Mar; 41():409-16. PubMed ID: 23040876 [TBL] [Abstract][Full Text] [Related]
9. Visual and fluorescent detection of tyrosinase activity by using a dual-emission ratiometric fluorescence probe. Yan X; Li H; Zheng W; Su X Anal Chem; 2015 Sep; 87(17):8904-9. PubMed ID: 26249217 [TBL] [Abstract][Full Text] [Related]
10. A novel immunoassay for residual bovine serum albumin (BSA) in vaccines using laser-induced fluorescence millimeter sensor array detection platform. Zhang X; Song C; Chen L; Zhang K; Fu A; Jin B; Zhang Z; Yang K Biosens Bioelectron; 2011 May; 26(9):3958-61. PubMed ID: 21470843 [TBL] [Abstract][Full Text] [Related]
11. Magnetofluorescent nanocomposites and quantum dots used for optimal application in magnetic fluorescence-linked immunoassay. Tsai HY; Li SY; Fuh CB Anal Bioanal Chem; 2018 Mar; 410(7):1923-1929. PubMed ID: 29335766 [TBL] [Abstract][Full Text] [Related]
12. The use of aggregation-induced emission probe doped silica nanoparticles for the immunoassay of human epididymis protein 4. Meng L; Nawaz MAH; Huang X; Ma Y; Li Y; Zhou H; Yu C Analyst; 2019 Oct; 144(20):6136-6142. PubMed ID: 31536063 [TBL] [Abstract][Full Text] [Related]
13. Metal-enhanced fluorescent dye-doped silica nanoparticles and magnetic separation: A sensitive platform for one-step fluorescence detection of prostate specific antigen. Xu DD; Deng YL; Li CY; Lin Y; Tang HW Biosens Bioelectron; 2017 Jan; 87():881-887. PubMed ID: 27662582 [TBL] [Abstract][Full Text] [Related]
14. A fluorescence ratiometric nano-pH sensor based on dual-fluorophore-doped silica nanoparticles. Gao F; Tang L; Dai L; Wang L Spectrochim Acta A Mol Biomol Spectrosc; 2007 Jun; 67(2):517-21. PubMed ID: 16965933 [TBL] [Abstract][Full Text] [Related]
15. Quantifying Aflatoxin B1 in peanut oil using fabricating fluorescence probes based on upconversion nanoparticles. Sun C; Li H; Koidis A; Chen Q Spectrochim Acta A Mol Biomol Spectrosc; 2016 Aug; 165():120-126. PubMed ID: 27124091 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and stability of IR-820 and FITC doped silica nanoparticles. Thorat AV; Ghoshal T; Chen L; Holmes JD; Morris MA J Colloid Interface Sci; 2017 Mar; 490():294-302. PubMed ID: 27914328 [TBL] [Abstract][Full Text] [Related]
17. Ru(bpy)3(2+)-doped silica nanoparticles labeling for a sandwich-type electrochemiluminescence immunosensor. Yang X; Yuan R; Chai Y; Zhuo Y; Mao L; Yuan S Biosens Bioelectron; 2010 Mar; 25(7):1851-5. PubMed ID: 20074928 [TBL] [Abstract][Full Text] [Related]
18. Chemiluminescence enzyme immunoassay using magnetic nanoparticles for detection of neuron specific enolase in human serum. Fu X; Meng M; Zhang Y; Yin Y; Zhang X; Xi R Anal Chim Acta; 2012 Apr; 722():114-8. PubMed ID: 22444542 [TBL] [Abstract][Full Text] [Related]
19. Metal-doped inorganic nanoparticles for multiplex detection of biomarkers by a sandwich-type ICP-MS immunoassay. Ko JA; Lim HB Anal Chim Acta; 2016 Sep; 938():1-6. PubMed ID: 27619081 [TBL] [Abstract][Full Text] [Related]
20. A DNA hybridization detection based on fluorescence resonance energy transfer between dye-doped core-shell silica nanoparticles and gold nanoparticles. Gao F; Cui P; Chen X; Ye Q; Li M; Wang L Analyst; 2011 Oct; 136(19):3973-80. PubMed ID: 21845282 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]